For example, we are going to train ConvNet
designed in this repo, so we can use the following command:
cd Vision-Pretraining-Tutorial/image_classification/
python main.py --cuda \
--dataset cifar \
--model convnet \
--batch_size 256 \
--optimizer adamw \
--base_lr 1e-3 \
--min_lr 1e-6
- Evaluate the
top1 & top5
accuracy:
cd Vision-Pretraining-Tutorial/image_classification/
python main.py --cuda \
--dataset cifar \
--model convnet \
--batch_size 256 \
--eval \
--resume path/to/checkpoint