forked from rtklibexplorer/RTKLIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpntpos.c
598 lines (519 loc) · 21.3 KB
/
pntpos.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*------------------------------------------------------------------------------
* pntpos.c : standard positioning
*
* Copyright (C) 2007-2015 by T.TAKASU, All rights reserved.
*
* version : $Revision:$ $Date:$
* history : 2010/07/28 1.0 moved from rtkcmn.c
* changed api:
* pntpos()
* deleted api:
* pntvel()
* 2011/01/12 1.1 add option to include unhealthy satellite
* reject duplicated observation data
* changed api: ionocorr()
* 2011/11/08 1.2 enable snr mask for single-mode (rtklib_2.4.1_p3)
* 2012/12/25 1.3 add variable snr mask
* 2014/05/26 1.4 support galileo and beidou
* 2015/03/19 1.5 fix bug on ionosphere correction for GLO and BDS
*-----------------------------------------------------------------------------*/
#include "rtklib.h"
static const char rcsid[]="$Id:$";
/* constants -----------------------------------------------------------------*/
#define SQR(x) ((x)*(x))
#define NX (4+3) /* # of estimated parameters */
#define MAXITR 10 /* max number of iteration for point pos */
#define ERR_ION 5.0 /* ionospheric delay std (m) */
#define ERR_TROP 3.0 /* tropspheric delay std (m) */
#define ERR_SAAS 0.3 /* saastamoinen model error std (m) */
#define ERR_BRDCI 0.5 /* broadcast iono model error factor */
#define ERR_CBIAS 0.3 /* code bias error std (m) */
#define REL_HUMI 0.7 /* relative humidity for saastamoinen model */
/* pseudorange measurement error variance ------------------------------------*/
static double varerr(const prcopt_t *opt, double el, int sys)
{
double fact,varr;
fact=sys==SYS_GLO?EFACT_GLO:(sys==SYS_SBS?EFACT_SBS:EFACT_GPS);
varr=SQR(opt->err[0])*(SQR(opt->err[1])+SQR(opt->err[2])/sin(el));
if (opt->ionoopt==IONOOPT_IFLC) varr*=SQR(3.0); /* iono-free */
return SQR(fact)*varr;
}
/* get tgd parameter (m) -----------------------------------------------------*/
static double gettgd(int sat, const nav_t *nav)
{
int i;
for (i=0;i<nav->n;i++) {
if (nav->eph[i].sat!=sat) continue;
return CLIGHT*nav->eph[i].tgd[0];
}
return 0.0;
}
/* psendorange with code bias correction -------------------------------------*/
static double prange(const obsd_t *obs, const nav_t *nav, const double *azel,
int iter, const prcopt_t *opt, double *var)
{
const double *lam=nav->lam[obs->sat-1];
double PC,P1,P2,P1_P2,P1_C1,P2_C2,gamma;
int i=0,j=1,sys;
*var=0.0;
if (!(sys=satsys(obs->sat,NULL))) return 0.0;
/* L1-L2 for GPS/GLO/QZS, L1-L5 for GAL/SBS */
if (NFREQ>=3&&(sys&(SYS_GAL|SYS_SBS))) j=2;
if (NFREQ<2||lam[i]==0.0||lam[j]==0.0) return 0.0;
/* test snr mask */
if (iter>0) {
if (testsnr(0,i,azel[1],obs->SNR[i]*0.25,&opt->snrmask)) {
trace(4,"snr mask: %s sat=%2d el=%.1f snr=%.1f\n",
time_str(obs->time,0),obs->sat,azel[1]*R2D,obs->SNR[i]*0.25);
return 0.0;
}
if (opt->ionoopt==IONOOPT_IFLC) {
if (testsnr(0,j,azel[1],obs->SNR[j]*0.25,&opt->snrmask)) return 0.0;
}
}
gamma=SQR(lam[j])/SQR(lam[i]); /* f1^2/f2^2 */
P1=obs->P[i];
P2=obs->P[j];
P1_P2=nav->cbias[obs->sat-1][0];
P1_C1=nav->cbias[obs->sat-1][1];
P2_C2=nav->cbias[obs->sat-1][2];
/* if no P1-P2 DCB, use TGD instead */
if (P1_P2==0.0&&(sys&(SYS_GPS|SYS_GAL|SYS_QZS))) {
P1_P2=(1.0-gamma)*gettgd(obs->sat,nav);
}
if (opt->ionoopt==IONOOPT_IFLC) { /* dual-frequency */
if (P1==0.0||P2==0.0) return 0.0;
if (obs->code[i]==CODE_L1C) P1+=P1_C1; /* C1->P1 */
if (obs->code[j]==CODE_L2C) P2+=P2_C2; /* C2->P2 */
/* iono-free combination */
PC=(gamma*P1-P2)/(gamma-1.0);
}
else { /* single-frequency */
if (P1==0.0) return 0.0;
if (obs->code[i]==CODE_L1C) P1+=P1_C1; /* C1->P1 */
PC=P1-P1_P2/(1.0-gamma);
}
if (opt->sateph==EPHOPT_SBAS) PC-=P1_C1; /* sbas clock based C1 */
*var=SQR(ERR_CBIAS);
return PC;
}
/* ionospheric correction ------------------------------------------------------
* compute ionospheric correction
* args : gtime_t time I time
* nav_t *nav I navigation data
* int sat I satellite number
* double *pos I receiver position {lat,lon,h} (rad|m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* int ionoopt I ionospheric correction option (IONOOPT_???)
* double *ion O ionospheric delay (L1) (m)
* double *var O ionospheric delay (L1) variance (m^2)
* return : status(1:ok,0:error)
*-----------------------------------------------------------------------------*/
extern int ionocorr(gtime_t time, const nav_t *nav, int sat, const double *pos,
const double *azel, int ionoopt, double *ion, double *var)
{
trace(4,"ionocorr: time=%s opt=%d sat=%2d pos=%.3f %.3f azel=%.3f %.3f\n",
time_str(time,3),ionoopt,sat,pos[0]*R2D,pos[1]*R2D,azel[0]*R2D,
azel[1]*R2D);
/* broadcast model */
if (ionoopt==IONOOPT_BRDC) {
*ion=ionmodel(time,nav->ion_gps,pos,azel);
*var=SQR(*ion*ERR_BRDCI);
return 1;
}
/* sbas ionosphere model */
if (ionoopt==IONOOPT_SBAS) {
return sbsioncorr(time,nav,pos,azel,ion,var);
}
/* ionex tec model */
if (ionoopt==IONOOPT_TEC) {
return iontec(time,nav,pos,azel,1,ion,var);
}
/* qzss broadcast model */
if (ionoopt==IONOOPT_QZS&&norm(nav->ion_qzs,8)>0.0) {
*ion=ionmodel(time,nav->ion_qzs,pos,azel);
*var=SQR(*ion*ERR_BRDCI);
return 1;
}
/* lex ionosphere model */
if (ionoopt==IONOOPT_LEX) {
return lexioncorr(time,nav,pos,azel,ion,var);
}
*ion=0.0;
*var=ionoopt==IONOOPT_OFF?SQR(ERR_ION):0.0;
return 1;
}
/* tropospheric correction -----------------------------------------------------
* compute tropospheric correction
* args : gtime_t time I time
* nav_t *nav I navigation data
* double *pos I receiver position {lat,lon,h} (rad|m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* int tropopt I tropospheric correction option (TROPOPT_???)
* double *trp O tropospheric delay (m)
* double *var O tropospheric delay variance (m^2)
* return : status(1:ok,0:error)
*-----------------------------------------------------------------------------*/
extern int tropcorr(gtime_t time, const nav_t *nav, const double *pos,
const double *azel, int tropopt, double *trp, double *var)
{
trace(4,"tropcorr: time=%s opt=%d pos=%.3f %.3f azel=%.3f %.3f\n",
time_str(time,3),tropopt,pos[0]*R2D,pos[1]*R2D,azel[0]*R2D,
azel[1]*R2D);
/* saastamoinen model */
if (tropopt==TROPOPT_SAAS||tropopt==TROPOPT_EST||tropopt==TROPOPT_ESTG) {
*trp=tropmodel(time,pos,azel,REL_HUMI);
*var=SQR(ERR_SAAS/(sin(azel[1])+0.1));
return 1;
}
/* sbas troposphere model */
if (tropopt==TROPOPT_SBAS) {
*trp=sbstropcorr(time,pos,azel,var);
return 1;
}
/* no correction */
*trp=0.0;
*var=tropopt==TROPOPT_OFF?SQR(ERR_TROP):0.0;
return 1;
}
/* pseudorange residuals -----------------------------------------------------*/
static int rescode(int iter, const obsd_t *obs, int n, const double *rs,
const double *dts, const double *vare, const int *svh,
const nav_t *nav, const double *x, const prcopt_t *opt,
double *v, double *H, double *var, double *azel, int *vsat,
double *resp, int *ns)
{
double r,dion,dtrp,vmeas,vion,vtrp,rr[3],pos[3],dtr,e[3],P,lam_L1;
int i,j,nv=0,sys,mask[4]={0};
trace(3,"resprng : n=%d\n",n);
for (i=0;i<3;i++) rr[i]=x[i]; dtr=x[3];
ecef2pos(rr,pos);
for (i=*ns=0;i<n&&i<MAXOBS;i++) {
vsat[i]=0; azel[i*2]=azel[1+i*2]=resp[i]=0.0;
if (!(sys=satsys(obs[i].sat,NULL))) continue;
/* reject duplicated observation data */
if (i<n-1&&i<MAXOBS-1&&obs[i].sat==obs[i+1].sat) {
trace(2,"duplicated observation data %s sat=%2d\n",
time_str(obs[i].time,3),obs[i].sat);
i++;
continue;
}
/* geometric distance/azimuth/elevation angle */
if ((r=geodist(rs+i*6,rr,e))<=0.0||
satazel(pos,e,azel+i*2)<opt->elmin) continue;
/* psudorange with code bias correction */
if ((P=prange(obs+i,nav,azel+i*2,iter,opt,&vmeas))==0.0) continue;
/* excluded satellite? */
if (satexclude(obs[i].sat,svh[i],opt)) continue;
/* ionospheric corrections */
if (!ionocorr(obs[i].time,nav,obs[i].sat,pos,azel+i*2,
iter>0?opt->ionoopt:IONOOPT_BRDC,&dion,&vion)) continue;
/* GPS-L1 -> L1/B1 */
if ((lam_L1=nav->lam[obs[i].sat-1][0])>0.0) {
dion*=SQR(lam_L1/lam_carr[0]);
}
/* tropospheric corrections */
if (!tropcorr(obs[i].time,nav,pos,azel+i*2,
iter>0?opt->tropopt:TROPOPT_SAAS,&dtrp,&vtrp)) {
continue;
}
/* pseudorange residual */
v[nv]=P-(r+dtr-CLIGHT*dts[i*2]+dion+dtrp);
/* design matrix */
for (j=0;j<NX;j++) H[j+nv*NX]=j<3?-e[j]:(j==3?1.0:0.0);
/* time system and receiver bias offset correction */
if (sys==SYS_GLO) {v[nv]-=x[4]; H[4+nv*NX]=1.0; mask[1]=1;}
else if (sys==SYS_GAL) {v[nv]-=x[5]; H[5+nv*NX]=1.0; mask[2]=1;}
else if (sys==SYS_CMP) {v[nv]-=x[6]; H[6+nv*NX]=1.0; mask[3]=1;}
else mask[0]=1;
vsat[i]=1; resp[i]=v[nv]; (*ns)++;
/* error variance */
var[nv++]=varerr(opt,azel[1+i*2],sys)+vare[i]+vmeas+vion+vtrp;
trace(4,"sat=%2d azel=%5.1f %4.1f res=%7.3f sig=%5.3f\n",obs[i].sat,
azel[i*2]*R2D,azel[1+i*2]*R2D,resp[i],sqrt(var[nv-1]));
}
/* constraint to avoid rank-deficient */
for (i=0;i<4;i++) {
if (mask[i]) continue;
v[nv]=0.0;
for (j=0;j<NX;j++) H[j+nv*NX]=j==i+3?1.0:0.0;
var[nv++]=0.01;
}
return nv;
}
/* validate solution ---------------------------------------------------------*/
static int valsol(const double *azel, const int *vsat, int n,
const prcopt_t *opt, const double *v, int nv, int nx,
char *msg)
{
double azels[MAXOBS*2],dop[4],vv;
int i,ns;
trace(3,"valsol : n=%d nv=%d\n",n,nv);
/* chi-square validation of residuals */
vv=dot(v,v,nv);
if (nv>nx&&vv>chisqr[nv-nx-1]) {
sprintf(msg,"chi-square error nv=%d vv=%.1f cs=%.1f",nv,vv,chisqr[nv-nx-1]);
return 0;
}
/* large gdop check */
for (i=ns=0;i<n;i++) {
if (!vsat[i]) continue;
azels[ ns*2]=azel[ i*2];
azels[1+ns*2]=azel[1+i*2];
ns++;
}
dops(ns,azels,opt->elmin,dop);
if (dop[0]<=0.0||dop[0]>opt->maxgdop) {
sprintf(msg,"gdop error nv=%d gdop=%.1f",nv,dop[0]);
return 0;
}
return 1;
}
/* estimate receiver position ------------------------------------------------*/
static int estpos(const obsd_t *obs, int n, const double *rs, const double *dts,
const double *vare, const int *svh, const nav_t *nav,
const prcopt_t *opt, sol_t *sol, double *azel, int *vsat,
double *resp, char *msg)
{
double x[NX]={0},dx[NX],Q[NX*NX],*v,*H,*var,sig;
int i,j,k,info,stat,nv,ns;
trace(3,"estpos : n=%d\n",n);
v=mat(n+4,1); H=mat(NX,n+4); var=mat(n+4,1);
for (i=0;i<3;i++) x[i]=sol->rr[i];
for (i=0;i<MAXITR;i++) {
/* pseudorange residuals */
nv=rescode(i,obs,n,rs,dts,vare,svh,nav,x,opt,v,H,var,azel,vsat,resp,
&ns);
if (nv<NX) {
sprintf(msg,"lack of valid sats ns=%d",nv);
break;
}
/* weight by variance */
for (j=0;j<nv;j++) {
sig=sqrt(var[j]);
v[j]/=sig;
for (k=0;k<NX;k++) H[k+j*NX]/=sig;
}
/* least square estimation */
if ((info=lsq(H,v,NX,nv,dx,Q))) {
sprintf(msg,"lsq error info=%d",info);
break;
}
for (j=0;j<NX;j++) x[j]+=dx[j];
if (norm(dx,NX)<1E-4) {
sol->type=0;
sol->time=timeadd(obs[0].time,-x[3]/CLIGHT);
sol->dtr[0]=x[3]/CLIGHT; /* receiver clock bias (s) */
sol->dtr[1]=x[4]/CLIGHT; /* glo-gps time offset (s) */
sol->dtr[2]=x[5]/CLIGHT; /* gal-gps time offset (s) */
sol->dtr[3]=x[6]/CLIGHT; /* bds-gps time offset (s) */
for (j=0;j<6;j++) sol->rr[j]=j<3?x[j]:0.0;
for (j=0;j<3;j++) sol->qr[j]=(float)Q[j+j*NX];
sol->qr[3]=(float)Q[1]; /* cov xy */
sol->qr[4]=(float)Q[2+NX]; /* cov yz */
sol->qr[5]=(float)Q[2]; /* cov zx */
sol->ns=(unsigned char)ns;
sol->age=sol->ratio=0.0;
/* validate solution */
if ((stat=valsol(azel,vsat,n,opt,v,nv,NX,msg))) {
sol->stat=opt->sateph==EPHOPT_SBAS?SOLQ_SBAS:SOLQ_SINGLE;
}
free(v); free(H); free(var);
return stat;
}
}
if (i>=MAXITR) sprintf(msg,"iteration divergent i=%d",i);
free(v); free(H); free(var);
return 0;
}
/* raim fde (failure detection and exclution) -------------------------------*/
static int raim_fde(const obsd_t *obs, int n, const double *rs,
const double *dts, const double *vare, const int *svh,
const nav_t *nav, const prcopt_t *opt, sol_t *sol,
double *azel, int *vsat, double *resp, char *msg)
{
obsd_t *obs_e;
sol_t sol_e={{0}};
char tstr[32],name[16],msg_e[128];
double *rs_e,*dts_e,*vare_e,*azel_e,*resp_e,rms_e,rms=100.0;
int i,j,k,nvsat,stat=0,*svh_e,*vsat_e,sat=0;
trace(3,"raim_fde: %s n=%2d\n",time_str(obs[0].time,0),n);
if (!(obs_e=(obsd_t *)malloc(sizeof(obsd_t)*n))) return 0;
rs_e = mat(6,n); dts_e = mat(2,n); vare_e=mat(1,n); azel_e=zeros(2,n);
svh_e=imat(1,n); vsat_e=imat(1,n); resp_e=mat(1,n);
for (i=0;i<n;i++) {
/* satellite exclution */
for (j=k=0;j<n;j++) {
if (j==i) continue;
obs_e[k]=obs[j];
matcpy(rs_e +6*k,rs +6*j,6,1);
matcpy(dts_e+2*k,dts+2*j,2,1);
vare_e[k]=vare[j];
svh_e[k++]=svh[j];
}
/* estimate receiver position without a satellite */
if (!estpos(obs_e,n-1,rs_e,dts_e,vare_e,svh_e,nav,opt,&sol_e,azel_e,
vsat_e,resp_e,msg_e)) {
trace(3,"raim_fde: exsat=%2d (%s)\n",obs[i].sat,msg);
continue;
}
for (j=nvsat=0,rms_e=0.0;j<n-1;j++) {
if (!vsat_e[j]) continue;
rms_e+=SQR(resp_e[j]);
nvsat++;
}
if (nvsat<5) {
trace(3,"raim_fde: exsat=%2d lack of satellites nvsat=%2d\n",
obs[i].sat,nvsat);
continue;
}
rms_e=sqrt(rms_e/nvsat);
trace(3,"raim_fde: exsat=%2d rms=%8.3f\n",obs[i].sat,rms_e);
if (rms_e>rms) continue;
/* save result */
for (j=k=0;j<n;j++) {
if (j==i) continue;
matcpy(azel+2*j,azel_e+2*k,2,1);
vsat[j]=vsat_e[k];
resp[j]=resp_e[k++];
}
stat=1;
*sol=sol_e;
sat=obs[i].sat;
rms=rms_e;
vsat[i]=0;
strcpy(msg,msg_e);
}
if (stat) {
time2str(obs[0].time,tstr,2); satno2id(sat,name);
trace(2,"%s: %s excluded by raim\n",tstr+11,name);
}
free(obs_e);
free(rs_e ); free(dts_e ); free(vare_e); free(azel_e);
free(svh_e); free(vsat_e); free(resp_e);
return stat;
}
/* doppler residuals ---------------------------------------------------------*/
static int resdop(const obsd_t *obs, int n, const double *rs, const double *dts,
const nav_t *nav, const double *rr, const double *x,
const double *azel, const int *vsat, double *v, double *H)
{
double lam,rate,pos[3],E[9],a[3],e[3],vs[3],cosel;
int i,j,nv=0;
trace(3,"resdop : n=%d\n",n);
ecef2pos(rr,pos); xyz2enu(pos,E);
for (i=0;i<n&&i<MAXOBS;i++) {
lam=nav->lam[obs[i].sat-1][0];
if (obs[i].D[0]==0.0||lam==0.0||!vsat[i]||norm(rs+3+i*6,3)<=0.0) {
continue;
}
/* line-of-sight vector in ecef */
cosel=cos(azel[1+i*2]);
a[0]=sin(azel[i*2])*cosel;
a[1]=cos(azel[i*2])*cosel;
a[2]=sin(azel[1+i*2]);
matmul("TN",3,1,3,1.0,E,a,0.0,e);
/* satellite velocity relative to receiver in ecef */
for (j=0;j<3;j++) vs[j]=rs[j+3+i*6]-x[j];
/* range rate with earth rotation correction */
rate=dot(vs,e,3)+OMGE/CLIGHT*(rs[4+i*6]*rr[0]+rs[1+i*6]*x[0]-
rs[3+i*6]*rr[1]-rs[ i*6]*x[1]);
/* doppler residual */
v[nv]=-lam*obs[i].D[0]-(rate+x[3]-CLIGHT*dts[1+i*2]);
/* design matrix */
for (j=0;j<4;j++) H[j+nv*4]=j<3?-e[j]:1.0;
nv++;
}
return nv;
}
/* estimate receiver velocity ------------------------------------------------*/
static void estvel(const obsd_t *obs, int n, const double *rs, const double *dts,
const nav_t *nav, const prcopt_t *opt, sol_t *sol,
const double *azel, const int *vsat)
{
double x[4]={0},dx[4],Q[16],*v,*H;
int i,j,nv;
trace(3,"estvel : n=%d\n",n);
v=mat(n,1); H=mat(4,n);
for (i=0;i<MAXITR;i++) {
/* doppler residuals */
if ((nv=resdop(obs,n,rs,dts,nav,sol->rr,x,azel,vsat,v,H))<4) {
break;
}
/* least square estimation */
if (lsq(H,v,4,nv,dx,Q)) break;
for (j=0;j<4;j++) x[j]+=dx[j];
if (norm(dx,4)<1E-6) {
for (i=0;i<3;i++) sol->rr[i+3]=x[i];
break;
}
}
free(v); free(H);
}
/* single-point positioning ----------------------------------------------------
* compute receiver position, velocity, clock bias by single-point positioning
* with pseudorange and doppler observables
* args : obsd_t *obs I observation data
* int n I number of observation data
* nav_t *nav I navigation data
* prcopt_t *opt I processing options
* sol_t *sol IO solution
* double *azel IO azimuth/elevation angle (rad) (NULL: no output)
* ssat_t *ssat IO satellite status (NULL: no output)
* char *msg O error message for error exit
* return : status(1:ok,0:error)
* notes : assuming sbas-gps, galileo-gps, qzss-gps, compass-gps time offset and
* receiver bias are negligible (only involving glonass-gps time offset
* and receiver bias)
*-----------------------------------------------------------------------------*/
extern int pntpos(const obsd_t *obs, int n, const nav_t *nav,
const prcopt_t *opt, sol_t *sol, double *azel, ssat_t *ssat,
char *msg)
{
prcopt_t opt_=*opt;
double *rs,*dts,*var,*azel_,*resp;
int i,stat,vsat[MAXOBS]={0},svh[MAXOBS];
sol->stat=SOLQ_NONE;
if (n<=0) {strcpy(msg,"no observation data"); return 0;}
trace(3,"pntpos : tobs=%s n=%d\n",time_str(obs[0].time,3),n);
sol->time=obs[0].time; msg[0]='\0';
rs=mat(6,n); dts=mat(2,n); var=mat(1,n); azel_=zeros(2,n); resp=mat(1,n);
if (opt_.mode!=PMODE_SINGLE) { /* for precise positioning */
#if 0
opt_.sateph =EPHOPT_BRDC;
#endif
opt_.ionoopt=IONOOPT_BRDC;
opt_.tropopt=TROPOPT_SAAS;
}
/* satellite positons, velocities and clocks */
satposs(sol->time,obs,n,nav,opt_.sateph,rs,dts,var,svh);
/* estimate receiver position with pseudorange */
stat=estpos(obs,n,rs,dts,var,svh,nav,&opt_,sol,azel_,vsat,resp,msg);
/* raim fde */
if (!stat&&n>=6&&opt->posopt[4]) {
stat=raim_fde(obs,n,rs,dts,var,svh,nav,&opt_,sol,azel_,vsat,resp,msg);
}
/* estimate receiver velocity with doppler */
if (stat) estvel(obs,n,rs,dts,nav,&opt_,sol,azel_,vsat);
if (azel) {
for (i=0;i<n*2;i++) azel[i]=azel_[i];
}
if (ssat) {
for (i=0;i<MAXSAT;i++) {
ssat[i].vs=0;
ssat[i].azel[0]=ssat[i].azel[1]=0.0;
ssat[i].resp[0]=ssat[i].resc[0]=0.0;
ssat[i].snr[0]=0;
}
for (i=0;i<n;i++) {
ssat[obs[i].sat-1].azel[0]=azel_[ i*2];
ssat[obs[i].sat-1].azel[1]=azel_[1+i*2];
ssat[obs[i].sat-1].snr[0]=obs[i].SNR[0];
if (!vsat[i]) continue;
ssat[obs[i].sat-1].vs=1;
ssat[obs[i].sat-1].resp[0]=resp[i];
}
}
free(rs); free(dts); free(var); free(azel_); free(resp);
return stat;
}