-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathschedule_openmp.cpp
279 lines (245 loc) · 5.58 KB
/
schedule_openmp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <omp.h>
using namespace std;
int main ( int argc, char *argv[] );
int prime_default ( int n );
int prime_static ( int n );
int prime_dynamic ( int n );
//****************************************************************************80
int main ( int argc, char *argv[] )
//****************************************************************************80
//
// Purpose:
//
// MAIN is the main program for SCHEDULE_OPENMP.
//
// Discussion:
//
// This program demonstrates the difference between default,
// static and dynamic scheduling for a loop parallelized in OpenMP.
//
// The purpose of scheduling is to deal with loops in which there is
// known or suspected imbalance in the work load. In this example,
// if the work is divided in the default manner between two threads,
// the second thread has 3 times the work of the first.
//
// Both static and dynamic scheduling, if used, even out the work
// so that both threads have about the same load. This could be
// expected to decrease the run time of the loop by about 1/3.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 10 July 2010
//
// Author:
//
// John Burkardt
//
{
int n;
int n_factor;
int n_hi;
int n_lo;
int primes;
double time1;
double time2;
double time3;
cout << "\n";
cout << "SCHEDULE_OPENMP\n";
cout << " C++/OpenMP version\n";
cout << " Count the primes from 1 to N.\n";
cout << " This is an unbalanced work load, particular for two threads.\n";
cout << " Demonstrate default, static and dynamic scheduling.\n";
cout << "\n";
cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n";
cout << " Number of threads = " << omp_get_max_threads ( ) << "\n";
n_lo = 1;
n_hi = 131072;
n_factor = 2;
cout << "\n";
cout << " Default Static Dynamic\n";
cout << " N Pi(N) Time Time Time\n";
cout << "\n";
n = n_lo;
while ( n <= n_hi )
{
time1 = omp_get_wtime ( );
primes = prime_default ( n );
time1 = omp_get_wtime ( ) - time1;
time2 = omp_get_wtime ( );
primes = prime_static ( n );
time2 = omp_get_wtime ( ) - time2;
time3 = omp_get_wtime ( );
primes = prime_dynamic ( n );
time3 = omp_get_wtime ( ) - time3;
cout << " " << setw(8) << n
<< " " << setw(8) << primes
<< " " << setw(12) << time1
<< " " << setw(12) << time2
<< " " << setw(12) << time3 << "\n";
n = n * n_factor;
}
//
// Terminate.
//
cout << "\n";
cout << "SCHEDULE_OPENMP\n";
cout << " Normal end of execution.\n";
return 0;
}
//****************************************************************************80
int prime_default ( int n )
//****************************************************************************80
//
// Purpose:
//
// PRIME_DEFAULT counts primes, using default scheduling.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 10 July 2010
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the maximum number to check.
//
// Output, int PRIME_DEFAULT, the number of prime numbers up to N.
//
{
int i;
int j;
int prime;
int total = 0;
# pragma omp parallel \
shared ( n ) \
private ( i, j, prime )
# pragma omp for reduction ( + : total )
for ( i = 2; i <= n; i++ )
{
prime = 1;
for ( j = 2; j < i; j++ )
{
if ( i % j == 0 )
{
prime = 0;
break;
}
}
total = total + prime;
}
return total;
}
//****************************************************************************80
int prime_static ( int n )
//****************************************************************************80
//
// Purpose:
//
// PRIME_STATIC counts primes using static scheduling.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 10 July 2010
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the maximum number to check.
//
// Output, int PRIME_STATIC, the number of prime numbers up to N.
//
{
int i;
int j;
int prime;
int total = 0;
# pragma omp parallel \
shared ( n ) \
private ( i, j, prime )
# pragma omp for reduction ( + : total ) schedule ( static, 100 )
for ( i = 2; i <= n; i++ )
{
prime = 1;
for ( j = 2; j < i; j++ )
{
if ( i % j == 0 )
{
prime = 0;
break;
}
}
total = total + prime;
}
return total;
}
//****************************************************************************80
int prime_dynamic ( int n )
//****************************************************************************80
//
// Purpose:
//
// PRIME_DYNAMIC counts primes using dynamic scheduling.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 10 July 2010
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the maximum number to check.
//
// Output, int PRIME_DYNAMIC, the number of prime numbers up to N.
//
{
int i;
int j;
int prime;
int total = 0;
# pragma omp parallel \
shared ( n ) \
private ( i, j, prime )
# pragma omp for reduction ( + : total ) schedule ( dynamic, 100 )
for ( i = 2; i <= n; i++ )
{
prime = 1;
for ( j = 2; j < i; j++ )
{
if ( i % j == 0 )
{
prime = 0;
break;
}
}
total = total + prime;
}
return total;
}