-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathasa006_prb_output.txt
236 lines (180 loc) · 4.97 KB
/
asa006_prb_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
14 December 2011 04:05:35 PM
ASA006_PRB:
C++ version
Test the ASA006 library.
TEST01:
CHOLESKY computes the Cholesky factorization
of a positive definite symmetric matrix.
A compressed storage format is used
Here we look at the matrix A which is
N+1 on the diagonal and
N on the off diagonals.
Matrix order N = 1
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 4.44089e-16
Matrix order N = 2
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 4.44089e-16
Matrix order N = 3
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 0
Matrix order N = 4
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 8.88178e-16
Matrix order N = 5
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 8.88178e-16
Matrix order N = 6
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 8.88178e-16
Matrix order N = 7
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 2.80867e-15
Matrix order N = 8
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 3.76822e-15
Matrix order N = 9
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 7.32411e-15
Matrix order N = 10
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 5.61733e-15
Matrix order N = 11
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 5.61733e-15
Matrix order N = 12
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 1.05091e-14
Matrix order N = 13
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 8.51911e-15
Matrix order N = 14
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 1.36445e-14
Matrix order N = 15
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 1.74951e-14
TEST02:
CHOLESKY computes the Cholesky factorization
of a positive definite symmetric matrix.
A compressed storage format is used
Here we look at the Hilbert matrix
A(I,J) = 1/(I+J-1)
For this matrix, we expect errors to grow quickly.
Matrix order N = 1
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 0
Matrix order N = 2
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 0
Matrix order N = 3
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 0
Matrix order N = 4
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 0
Matrix order N = 5
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 1.38778e-17
Matrix order N = 6
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 1.38778e-17
Matrix order N = 7
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 2.4037e-17
Matrix order N = 8
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 3.10317e-17
Matrix order N = 9
Maxtrix nullity NULLTY = 0
RMS ( A - U'*U ) = 3.80059e-17
Matrix order N = 10
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 2.22673e-11
Matrix order N = 11
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 0.453629
Matrix order N = 12
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 15.5368
Matrix order N = 13
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 15.7068
Matrix order N = 14
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 22.5311
Matrix order N = 15
Maxtrix nullity NULLTY = 1
RMS ( A - U'*U ) = 3277.17
TEST03:
SUBCHL computes the Cholesky factor
of a submatrix
of a positive definite symmetric matrix.
A compressed storage format is used.
Here we look at the Hilbert matrix
A(I,J) = 1/(I+J-1).
For this particular matrix, we expect the
errors to grow rapidly.
Matrix order N = 1
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 1
RMS ( A - U'*U ) = 0
Matrix order N = 2
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 0.0833333
RMS ( A - U'*U ) = 0
Matrix order N = 3
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 0.000462963
RMS ( A - U'*U ) = 0
Matrix order N = 4
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 1.65344e-07
RMS ( A - U'*U ) = 0
Matrix order N = 5
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 3.7493e-12
RMS ( A - U'*U ) = 1.38778e-17
Matrix order N = 6
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 5.3673e-18
RMS ( A - U'*U ) = 1.38778e-17
Matrix order N = 7
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 4.8358e-25
RMS ( A - U'*U ) = 2.4037e-17
Matrix order N = 8
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 2.73705e-33
RMS ( A - U'*U ) = 3.10317e-17
Matrix order N = 9
Maxtrix nullity NULLTY = 0
Matrix determinant DET = 9.72027e-43
RMS ( A - U'*U ) = 3.80059e-17
Matrix order N = 10
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 2.22673e-11
Matrix order N = 11
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 0.0309714
Matrix order N = 12
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 0.745285
Matrix order N = 13
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 16.2549
Matrix order N = 14
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 23.9722
Matrix order N = 15
Maxtrix nullity NULLTY = 1
Matrix determinant DET = 0
RMS ( A - U'*U ) = 1444.83
ASA006_PRB:
Normal end of execution.
14 December 2011 04:05:35 PM