-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfd2d_heat_steady.cpp
648 lines (601 loc) · 13.3 KB
/
fd2d_heat_steady.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# include <cstdlib>
# include <iomanip>
# include <iostream>
# include <cmath>
# include <ctime>
using namespace std;
# include "fd2d_heat_steady.hpp"
void boundary ( int nx, int ny, double x[], double y[], int n, double a[],
double rhs[] );
//****************************************************************************80
double *fd2d_heat_steady ( int nx, int ny, double x[], double y[],
double d ( double x, double y ), double f ( double x, double y ) )
//****************************************************************************80
//
// Purpose:
//
// FD2D_HEAT_STEADY solves the steady 2D heat equation.
//
// Discussion:
//
// Nodes are assigned a single index K, which increases as:
//
// (NY-1)*NX+1 (NY-1)*NX+2 ... NY * NX
// .... .... ... .....
// NX+1 NX+2 ... 2 * NX
// 1 2 ... NX
//
// Therefore, the neighbors of an interior node numbered C are
//
// C+NY
// |
// C-1 --- C --- C+1
// |
// C-NY
//
// Nodes on the lower boundary satisfy:
// 1 <= K <= NX
// Nodes on the upper boundary satisfy:
// (NY-1)*NX+1 <= K <= NY * NX
// Nodes on the left boundary satisfy:
// mod ( K, NX ) = 1
// Nodes on the right boundary satisfy:
// mod ( K, NX ) = 0
//
// If we number rows from bottom I = 1 to top I = NY
// and columns from left J = 1 to right J = NX, we have
// K = ( I - 1 ) * NX + J
// and
// J = 1 + mod ( K - 1, NX )
// I = 1 + ( K - J ) / NX
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 29 August 2013
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int NX, NY, the number of grid points in X and Y.
//
// Input, double X[NX], Y[NY], the coordinates of grid lines.
//
// Input, double D ( X, Y ), evaluates the thermal
// conductivity.
//
// Input, double F ( X, Y ), evaluates the heat
// source term.
//
// Output, double FD2D_HEAT_STEADY[NX*NY], the approximation to the solution
// at the grid points.
//
{
double *a;
int n;
double *u;
//
// Set the total number of unknowns.
//
n = nx * ny;
//
// Set up the matrix and right hand side.
//
a = new double[n*n];
u = new double[n];
//
// Define the matrix at interior points.
//
interior ( nx, ny, x, y, d, f, n, a, u );
//
// Handle boundary conditions.
//
boundary ( nx, ny, x, y, n, a, u );
//
// Solve the linear system.
//
r8mat_fs ( n, a, u );
//
// Free memory.
//
delete [] a;
return u;
}
//****************************************************************************80
void interior ( int nx, int ny, double x[], double y[],
double d ( double x, double y ), double f ( double x, double y ), int n,
double a[], double rhs[] )
//****************************************************************************80
//
// Purpose:
//
// INTERIOR sets up the matrix and right hand side at interior nodes.
//
// Discussion:
//
// Nodes are assigned a single index K, which increases as:
//
// (NY-1)*NX+1 (NY-1)*NX+2 ... NY * NX
// .... .... ... .....
// NX+1 NX+2 ... 2 * NX
// 1 2 ... NX
//
// Therefore, the neighbors of an interior node numbered C are
//
// C+NY
// |
// C-1 --- C --- C+1
// |
// C-NY
//
// If we number rows from bottom I = 1 to top I = NY
// and columns from left J = 1 to right J = NX, then the relationship
// between the single index K and the row and column indices I and J is:
// K = ( I - 1 ) * NX + J
// and
// J = 1 + mod ( K - 1, NX )
// I = 1 + ( K - J ) / NX
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 29 August 2013
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int NX, NY, the number of grid points in X and Y.
//
// Input, double X[NX], Y[NY], the coordinates of grid lines.
//
// Input, double D ( double X, double Y ), evaluates the thermal
// conductivity.
//
// Input, double function F ( double X, double Y ), evaluates the heat
// source term.
//
// Input, int N, the number of nodes.
//
// Output, double A[N*N], the system matrix, with the entries for
// the interior nodes filled in.
//
// Output, double RHS[N], the system right hand side, with the
// entries for the interior nodes filled in.
//
{
double dc0;
double dce;
double dcn;
double dcs;
double dcw;
double dx;
double dy;
int ic;
int in;
int is;
int jc;
int je;
int jw;
int kc;
int ke;
int kn;
int ks;
int kw;
dc0 = 1.0;
//
// For now, assume X and Y are equally spaced.
//
dx = x[1] - x[0];
dy = y[1] - y[0];
for ( ic = 1; ic < ny - 1; ic++ )
{
for ( jc = 1; jc < nx - 1; jc++ )
{
in = ic + 1;
is = ic - 1;
je = jc + 1;
jw = jc - 1;
kc = ic * nx + jc;
ke = kc + 1;
kw = kc - 1;
kn = kc + nx;
ks = kc - nx;
dce = d ( 0.5 * ( x[jc] + x[je] ), y[ic] );
dcw = d ( 0.5 * ( x[jc] + x[jw] ), y[ic] );
dcn = d ( x[jc], 0.5 * ( y[ic] + y[in] ) );
dcs = d ( x[jc], 0.5 * ( y[ic] + y[is] ) );
a[kc+kc*n] = ( dce + dcw ) / dx / dx + ( dcn + dcs ) / dy / dy;
a[kc+ke*n] = - dce / dx / dx;
a[kc+kw*n] = - dcw / dx / dx;
a[kc+kn*n] = - dcn / dy / dy;
a[kc+ks*n] = - dcs / dy / dy;
rhs[kc] = f ( x[jc], y[ic] );
}
}
return;
}
//****************************************************************************80
double r8_abs ( double x )
//****************************************************************************80
//
// Purpose:
//
// R8_ABS returns the absolute value of an R8.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 14 November 2006
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, double X, the quantity whose absolute value is desired.
//
// Output, double R8_ABS, the absolute value of X.
//
{
double value;
if ( 0.0 <= x )
{
value = + x;
}
else
{
value = - x;
}
return value;
}
//****************************************************************************80
void r8mat_fs ( int n, double a[], double x[] )
//****************************************************************************80
//
// Purpose:
//
// R8MAT_FS factors and solves a system with one right hand side.
//
// Discussion:
//
// This routine differs from R8MAT_FSS in two ways:
// * only one right hand side is allowed;
// * the input matrix A is not modified.
//
// This routine uses partial pivoting, but no pivot vector is required.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 21 January 2013
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the order of the matrix.
// N must be positive.
//
// Input, double A[N*N], the coefficient matrix of the linear system.
//
// Input/output, double X[N], on input, the right hand side of the
// linear system. On output, the solution of the linear system.
//
{
double *a2;
int i;
int ipiv;
int j;
int jcol;
double piv;
double t;
a2 = new double[n*n];
for ( j = 0; j < n; j++ )
{
for ( i = 0; i < n; i++ )
{
a2[i+j*n] = a[i+j*n];
}
}
for ( jcol = 1; jcol <= n; jcol++ )
{
//
// Find the maximum element in column I.
//
piv = r8_abs ( a2[jcol-1+(jcol-1)*n] );
ipiv = jcol;
for ( i = jcol+1; i <= n; i++ )
{
if ( piv < r8_abs ( a2[i-1+(jcol-1)*n] ) )
{
piv = r8_abs ( a2[i-1+(jcol-1)*n] );
ipiv = i;
}
}
if ( piv == 0.0 )
{
cout << "\n";
cout << "R8MAT_FS - Fatal error!\n";
cout << " Zero pivot on step " << jcol << "\n";
exit ( 1 );
}
//
// Switch rows JCOL and IPIV, and X.
//
if ( jcol != ipiv )
{
for ( j = 1; j <= n; j++ )
{
t = a2[jcol-1+(j-1)*n];
a2[jcol-1+(j-1)*n] = a2[ipiv-1+(j-1)*n];
a2[ipiv-1+(j-1)*n] = t;
}
t = x[jcol-1];
x[jcol-1] = x[ipiv-1];
x[ipiv-1] = t;
}
//
// Scale the pivot row.
//
t = a2[jcol-1+(jcol-1)*n];
a2[jcol-1+(jcol-1)*n] = 1.0;
for ( j = jcol+1; j <= n; j++ )
{
a2[jcol-1+(j-1)*n] = a2[jcol-1+(j-1)*n] / t;
}
x[jcol-1] = x[jcol-1] / t;
//
// Use the pivot row to eliminate lower entries in that column.
//
for ( i = jcol+1; i <= n; i++ )
{
if ( a2[i-1+(jcol-1)*n] != 0.0 )
{
t = - a2[i-1+(jcol-1)*n];
a2[i-1+(jcol-1)*n] = 0.0;
for ( j = jcol+1; j <= n; j++ )
{
a2[i-1+(j-1)*n] = a2[i-1+(j-1)*n] + t * a2[jcol-1+(j-1)*n];
}
x[i-1] = x[i-1] + t * x[jcol-1];
}
}
}
//
// Back solve.
//
for ( jcol = n; 2 <= jcol; jcol-- )
{
for ( i = 1; i < jcol; i++ )
{
x[i-1] = x[i-1] - a2[i-1+(jcol-1)*n] * x[jcol-1];
}
}
delete [] a2;
return;
}
//****************************************************************************80
double *r8vec_linspace_new ( int n, double a_first, double a_last )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_LINSPACE_NEW creates a vector of linearly spaced values.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12.
//
// In other words, the interval is divided into N-1 even subintervals,
// and the endpoints of intervals are used as the points.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 29 March 2011
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of entries in the vector.
//
// Input, double A_FIRST, A_LAST, the first and last entries.
//
// Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data.
//
{
double *a;
int i;
a = new double[n];
if ( n == 1 )
{
a[0] = ( a_first + a_last ) / 2.0;
}
else
{
for ( i = 0; i < n; i++ )
{
a[i] = ( ( double ) ( n - 1 - i ) * a_first
+ ( double ) ( i ) * a_last )
/ ( double ) ( n - 1 );
}
}
return a;
}
//****************************************************************************80
void r8vec_mesh_2d ( int nx, int ny, double xvec[], double yvec[],
double xmat[], double ymat[] )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_MESH_2D creates a 2D mesh from X and Y vectors.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// NX = 2
// XVEC = ( 1, 2, 3 )
// NY = 3
// YVEC = ( 4, 5 )
//
// XMAT = (
// 1, 2, 3
// 1, 2, 3 )
//
// YMAT = (
// 4, 4, 4
// 5, 5, 5 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 26 July 2013
//
// Parameters:
//
// Input, int NX, NY, the number of X and Y values.
//
// Input, double XVEC[NX], YVEC[NY], the X and Y coordinate
// values.
//
// Output, double XMAT[NX*NY], YMAT[NX*NY], the coordinate
// values of points on an NX by NY mesh.
//
{
int i;
int j;
for ( j = 0; j < ny; j++ )
{
for ( i = 0; i < nx; i++ )
{
xmat[i+j*nx] = xvec[i];
}
}
for ( j = 0; j < ny; j++ )
{
for ( i = 0; i < nx; i++ )
{
ymat[i+j*nx] = yvec[j];
}
}
return;
}
//****************************************************************************80
void r8vec_print ( int n, double a[], string title )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_PRINT prints an R8VEC.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 16 August 2004
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of components of the vector.
//
// Input, double A[N], the vector to be printed.
//
// Input, string TITLE, a title.
//
{
int i;
cout << "\n";
cout << title << "\n";
cout << "\n";
for ( i = 0; i < n; i++ )
{
cout << " " << setw(8) << i
<< ": " << setw(14) << a[i] << "\n";
}
return;
}
//****************************************************************************80
void timestamp ( )
//****************************************************************************80
//
// Purpose:
//
// TIMESTAMP prints the current YMDHMS date as a time stamp.
//
// Example:
//
// 31 May 2001 09:45:54 AM
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 08 July 2009
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// None
//
{
# define TIME_SIZE 40
static char time_buffer[TIME_SIZE];
const struct std::tm *tm_ptr;
size_t len;
std::time_t now;
now = std::time ( NULL );
tm_ptr = std::localtime ( &now );
len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr );
std::cout << time_buffer << "\n";
return;
# undef TIME_SIZE
}