-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfeynman_kac_1d.cpp
535 lines (487 loc) · 11.3 KB
/
feynman_kac_1d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <cmath>
# include <ctime>
using namespace std;
int main ( int argc, char **argv );
double potential ( double a, double x );
double r8_abs ( double x );
double r8_uniform_01 ( int *seed );
void timestamp ( );
//****************************************************************************80
int main ( int argc, char **argv )
//****************************************************************************80
//
// Purpose:
//
// MAIN is the main program for FEYNMAN_KAC_1D.
//
// Discussion:
//
// This program is derived from section 2.5, exercise 2.2 of Petersen
// and Arbenz.
//
// The problem is to determine the solution U(X) of the following
// partial differential equation:
//
// (1/2) Laplacian U - V(X) * U = 0,
//
// inside the domain D:
//
// D = { X | (X/A)^2 <= 1 }
//
// with the boundary condition U(boundary(D)) = 1.
//
// V(X) is the potential function:
//
// V = 2 * ( (X/A^2)^2 + 1/A^2.
//
// The analytic solution of this problem is already known:
//
// U(X) = exp ( (X/A)^2 - 1 ).
//
// Our method is via the Feynman-Kac Formula.
//
// The idea is to start from any x in D, and
// compute x+Wx(t) where 1D Brownian motion
// Wx is updated each step by sqrt(h)*z,
// each z is an independent approximately Gaussian
// random variable with zero mean and variance 1.
//
// Each x1(t) is advanced until x1(t) exits the domain D.
//
// Upon its first exit from D, the sample path x1 is stopped and a
// new sample path at x is started until N such paths are completed.
//
// The Feynman-Kac formula gives the solution here as
//
// U(X) = (1/N) sum(1 <= I <= N) Y(tau_i),
//
// where
//
// Y(tau) = exp( -int(s=0..tau) v(x1(s)) ds),
//
// and tau = first exit time for path x1.
//
// The integration procedure is a second order weak accurate method:
//
// X(t+h) = x1(t) + sqrt ( h ) * z
//
// Here Z is an approximately normal univariate Gaussian.
//
// An Euler predictor approximates Y at the end of the step
//
// Y_e = (1 - h*v(X(t)) * Y(t),
//
// A trapezoidal rule completes the step:
//
// Y(t+h) = Y(t) - (h/2)*[v(X(t+h))*Y_e + v(X(t))*Y(t)].
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 29 May 2012
//
// Author:
//
// Original C 3D version by Wesley Petersen.
// C++ 1D version by John Burkardt.
//
// Reference:
//
// Peter Arbenz, Wesley Petersen,
// Introduction to Parallel Computing:
// A Practical Guide with Examples in C,
// Oxford, 2004,
// ISBN: 0-19-851577-4,
// LC: QA76.59.P47.
//
{
double a = 2.0;
double chk;
double dx;
double err;
double h = 0.0001;
int i;
int it;
int j;
int k;
int n1;
int n = 10000;
int n_int;
int ni;
double rth;
int seed = 123456789;
int steps;
int steps_ave;
double sum;
double test;
double us;
double vh;
double vs;
double x;
double x1;
double w;
double w_exact;
double we;
double wt;
timestamp ( );
cout << "\n";
cout << "FEYNMAN_KAC_1D:\n";
cout << " C++ version.\n";
cout << "\n";
cout << " Program parameters:\n";
cout << "\n";
cout << " The calculation takes place inside an interval.\n";
cout << " The solution will be estimated at points\n";
cout << " on a regular spaced grid within the interval.\n";
cout << " Each solution will be estimated by computing " << n << " trajectories\n";
cout << " from the point to the boundary.\n";
cout << "\n";
cout << " (X/A)^2 = 1\n";
cout << "\n";
cout << " The interval parameter A is:\n";
cout << "\n";
cout << " A = " << a << "\n";
cout << "\n";
cout << " Path stepsize H = " << h << "\n";
//
// Choose the spacing so we have about ni points on or in the interval.
//
ni = 21;
cout << "\n";
cout << " X coordinate discretized by " << ni + 2 << " points\n";
//
// RTH is the scaled stepsize.
//
rth = sqrt ( h );
err = 0.0;
//
// Loop over the points.
//
cout << "\n";
cout << " I K X W exact";
cout << " W Approx Error Ave Steps Test\n";
cout << "\n";
k = 0;
n_int = 0;
for ( i = 0; i <= ni + 1; i++ )
{
x = ( ( double ) ( ni - i ) * ( - a )
+ ( double ) ( i - 1 ) * a )
/ ( double ) ( ni - 1 );
k = k + 1;
test = a * a - x * x;
if ( test < 0.0 )
{
w_exact = 1.0;
wt = 1.0;
steps_ave = 0;
cout << " " << setw(4) << i
<< " " << setw(4) << k
<< " " << setw(12) << x
<< " " << setw(12) << w_exact
<< " " << setw(12) << wt
<< " " << setw(12) << r8_abs ( w_exact - wt )
<< " " << setw(8) << steps_ave
<< " " << setw(8) << test << "\n";
continue;
}
n_int = n_int + 1;
//
// Compute the exact solution at this point (x,y,z).
//
w_exact = exp ( pow ( x / a, 2 ) - 1.0 );
//
// Now try to estimate the solution at this point.
//
wt = 0.0;
steps = 0;
for ( it = 1; it <= n; it++ )
{
x1 = x;
//
// W = exp(-int(s=0..t) v(X)ds)
//
w = 1.0;
//
// CHK is < 1.0 while the point is inside the interval.
//
chk = 0.0;
while ( chk < 1.0 )
{
//
// Determine DX.
//
us = r8_uniform_01 ( &seed ) - 0.5;
if ( us < 0.0 )
{
dx = - rth;
}
else
{
dx = + rth;
}
vs = potential ( a, x1 );
//
// Move to the new point.
//
x1 = x1 + dx;
steps = steps + 1;
vh = potential ( a, x1 );
we = ( 1.0 - h * vs ) * w;
w = w - 0.5 * h * ( vh * we + vs * w );
chk = pow ( x1 / a, 2 );
}
wt = wt + w;
}
//
// WT is the average of the sum of the different trials.
//
wt = wt / ( double ) ( n );
steps_ave = steps / n;
//
// Add error in WT to the running L2 error in the solution.
//
err = err + pow ( w_exact - wt, 2 );
cout << " " << setw(4) << i
<< " " << setw(4) << k
<< " " << setw(12) << x
<< " " << setw(12) << w_exact
<< " " << setw(12) << wt
<< " " << setw(12) << r8_abs ( w_exact - wt )
<< " " << setw(8) << steps_ave
<< " " << setw(8) << test << "\n";
}
//
// Compute the RMS error for all the points.
//
err = sqrt ( err / ( double ) ( n_int ) );
cout << "\n";
cout << " RMS absolute error in solution = " << err << "\n";
//
// Terminate.
//
cout << "\n";
cout << "FEYNMAN_KAC_1D:\n";
cout << " Normal end of execution.\n";
cout << "\n";
timestamp ( );
return 0;
}
//****************************************************************************80
double potential ( double a, double x )
//****************************************************************************80
//
// Purpose:
//
// POTENTIAL evaluates the potential function V(X).
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 29 May 2012
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, double A, the parameter that defines the region.
//
// Input, double X, the coordinate of the point.
//
// Output, double POTENTIAL, the value of the potential function.
//
{
double value;
value = 2.0 * pow ( x / a / a, 2 ) + 1.0 / a / a;
return value;
}
//****************************************************************************80
double r8_abs ( double x )
//****************************************************************************80
//
// Purpose:
//
// R8_ABS returns the absolute value of an R8.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 14 November 2006
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, double X, the quantity whose absolute value is desired.
//
// Output, double R8_ABS, the absolute value of X.
//
{
double value;
if ( 0.0 <= x )
{
value = + x;
}
else
{
value = - x;
}
return value;
}
//****************************************************************************80
double r8_uniform_01 ( int *seed )
//****************************************************************************80
//
// Purpose:
//
// R8_UNIFORM_01 returns a unit pseudorandom R8.
//
// Discussion:
//
// This routine implements the recursion
//
// seed = ( 16807 * seed ) mod ( 2^31 - 1 )
// u = seed / ( 2^31 - 1 )
//
// The integer arithmetic never requires more than 32 bits,
// including a sign bit.
//
// If the initial seed is 12345, then the first three computations are
//
// Input Output R8_UNIFORM_01
// SEED SEED
//
// 12345 207482415 0.096616
// 207482415 1790989824 0.833995
// 1790989824 2035175616 0.947702
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 11 August 2004
//
// Author:
//
// John Burkardt
//
// Reference:
//
// Paul Bratley, Bennett Fox, Linus Schrage,
// A Guide to Simulation,
// Second Edition,
// Springer, 1987,
// ISBN: 0387964673,
// LC: QA76.9.C65.B73.
//
// Bennett Fox,
// Algorithm 647:
// Implementation and Relative Efficiency of Quasirandom
// Sequence Generators,
// ACM Transactions on Mathematical Software,
// Volume 12, Number 4, December 1986, pages 362-376.
//
// Pierre L'Ecuyer,
// Random Number Generation,
// in Handbook of Simulation,
// edited by Jerry Banks,
// Wiley, 1998,
// ISBN: 0471134031,
// LC: T57.62.H37.
//
// Peter Lewis, Allen Goodman, James Miller,
// A Pseudo-Random Number Generator for the System/360,
// IBM Systems Journal,
// Volume 8, Number 2, 1969, pages 136-143.
//
// Parameters:
//
// Input/output, int *SEED, the "seed" value. Normally, this
// value should not be 0. On output, SEED has been updated.
//
// Output, double R8_UNIFORM_01, a new pseudorandom variate,
// strictly between 0 and 1.
//
{
int i4_huge = 2147483647;
int k;
double r;
if ( *seed == 0 )
{
cerr << "\n";
cerr << "R8_UNIFORM_01 - Fatal error!\n";
cerr << " Input value of SEED = 0.\n";
exit ( 1 );
}
k = *seed / 127773;
*seed = 16807 * ( *seed - k * 127773 ) - k * 2836;
if ( *seed < 0 )
{
*seed = *seed + i4_huge;
}
//
// Although SEED can be represented exactly as a 32 bit integer,
// it generally cannot be represented exactly as a 32 bit real number.
//
r = ( double ) ( *seed ) * 4.656612875E-10;
return r;
}
//****************************************************************************80
void timestamp ( )
//****************************************************************************80
//
// Purpose:
//
// TIMESTAMP prints the current YMDHMS date as a time stamp.
//
// Example:
//
// 31 May 2001 09:45:54 AM
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 08 July 2009
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// None
//
{
# define TIME_SIZE 40
static char time_buffer[TIME_SIZE];
const struct std::tm *tm_ptr;
size_t len;
std::time_t now;
now = std::time ( NULL );
tm_ptr = std::localtime ( &now );
len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr );
std::cout << time_buffer << "\n";
return;
# undef TIME_SIZE
}