-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgasket_poly_filled.cpp
251 lines (223 loc) · 5.05 KB
/
gasket_poly_filled.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# include <cstdlib>
# include <iostream>
# include <GLUT/glut.h>
//# include <GL/glut.h>
//# include <GL/freeglut.h>
using namespace std;
typedef float point2[2];
int main ( int argc, char *argv[] );
void display ( void );
void divide_triangle ( point2 a, point2 b, point2 c, int m );
void myinit ( void );
void triangle ( point2 a, point2 b, point2 c );
//
// This data needs to be shared by several routines.
//
point2 v[] = {
{ -1.0, 0.58 },
{ 1.0, -0.58 },
{ 0.0, 1.15 } };
int n;
//****************************************************************************80
int main ( int argc, char *argv[] )
//****************************************************************************80
//
// Purpose:
//
// MAIN is the main program for the OpenGL Gasket example.
//
// Discussion:
//
// This program draws the Sierpinski gasket by displaying filled polygons.
//
// The main program calls GLUT functions to set up the windows,
// name the required callbacks and callback functions, in particular
// the DISPLAY callback.
//
// Modified:
//
// 08 September 2003
//
// Reference:
//
// Edward Angel,
// Interactive Computer Graphics:
// A Top-Down Approach with OpenGL,
// Second Edition,
// Addison Wesley, 2000.
//
{
cout << "\n";
cout << "GASKET_POLY_FILLED:\n";
cout << " C++ version\n";
cout << "\n";
cout << " This is a program which uses OpenGL\n";
cout << " to display the image of a Sierpinski gasket.\n";
cout << "\n";
cout << " The gasket is depicted using filled polygons.\n";
if ( 2 <= argc )
{
n = atoi ( argv[1] );
}
else
{
cout << "\n";
cout << "GASKET_POLY_FILLED:\n";
cout << " Please enter N, the number of recursive steps.\n";
cout << " A reasonable number if 4 or 5.\n";
cin >> n;
}
glutInit ( &argc, argv );
glutInitDisplayMode ( GLUT_SINGLE | GLUT_RGB );
glutInitWindowSize ( 500, 500 );
glutInitWindowPosition ( 0, 0 );
glutCreateWindow ( "Sierpinski Gasket (Filled Polygons)" );
glutDisplayFunc ( display );
myinit ( );
glutMainLoop ( );
cout << "\n";
cout << "GASKET_POLY_FILLED:\n";
cout << " Normal end of execution.\n";
return 0;
}
//****************************************************************************80
void display ( void )
//****************************************************************************80
//
// Purpose:
//
// DISPLAY generates the graphics output.
//
// Modified:
//
// 08 September 2003
//
// Reference:
//
// Edward Angel,
// Interactive Computer Graphics:
// A Top-Down Approach with OpenGL,
// Second Edition,
// Addison Wesley, 2000.
//
{
//
// Clear the window.
//
glClear ( GL_COLOR_BUFFER_BIT );
divide_triangle ( v[0], v[1], v[2], n );
//
// Clear all buffers.
//
glFlush ( );
return;
}
//****************************************************************************80
void divide_triangle ( point2 a, point2 b, point2 c, int m )
//****************************************************************************80
//
// Purpose:
//
// DIVIDE_TRIANGLE...
//
// Modified:
//
// 08 September 2003
//
// Reference:
//
// Edward Angel,
// Interactive Computer Graphics:
// A Top-Down Approach with OpenGL,
// Second Edition,
// Addison Wesley, 2000.
//
{
int j;
point2 v0;
point2 v1;
point2 v2;
if ( 0 < m )
{
for ( j = 0; j < 2; j++ )
{
v0[j] = ( a[j] + b[j] ) / 2.0;
v1[j] = ( a[j] + c[j] ) / 2.0;
v2[j] = ( b[j] + c[j] ) / 2.0;
}
divide_triangle ( a, v0, v1, m-1 );
divide_triangle ( c, v1, v2, m-1 );
divide_triangle ( b, v2, v0, m-1 );
}
else
{
triangle ( a, b, c );
}
return;
}
//****************************************************************************80
void myinit ( void )
//****************************************************************************80
//
// Purpose:
//
// MYINIT initializes OpenGL state variables dealing with viewing and attributes.
//
// Modified:
//
// 08 September 2003
//
// Reference:
//
// Edward Angel,
// Interactive Computer Graphics:
// A Top-Down Approach with OpenGL,
// Second Edition,
// Addison Wesley, 2000.
//
{
//
// Set the background to WHITE.
//
glClearColor ( 1.0, 1.0, 1.0, 1.0 );
//
// Draw in BLUE.
//
glColor3f ( 0.0, 0.0, 1.0 );
//
// Set up 500 by 500 viewing window with origin at the lower left.
//
glMatrixMode ( GL_PROJECTION );
glLoadIdentity ( );
gluOrtho2D ( -2.0, 2.0, -2.0, 2.0);
glMatrixMode ( GL_MODELVIEW );
return;
}
//****************************************************************************80
void triangle ( point2 a, point2 b, point2 c )
//****************************************************************************80
//
// Purpose:
//
// TRIANGLE displays one triangle.
//
// Modified:
//
// 08 September 2003
//
// Reference:
//
// Edward Angel,
// Interactive Computer Graphics:
// A Top-Down Approach with OpenGL,
// Second Edition,
// Addison Wesley, 2000.
//
{
glBegin ( GL_TRIANGLES );
glVertex2fv ( a );
glVertex2fv ( b );
glVertex2fv ( c );
glEnd ( );
return;
}