-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcompute_pi.cpp
395 lines (348 loc) · 9.01 KB
/
compute_pi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <cstring>
# include <omp.h>
using namespace std;
int main ( int argc, char *argv[] );
void r8_test ( int r8_logn_max );
double r8_abs ( double r8 );
double r8_pi_est_omp ( int n );
double r8_pi_est_seq ( int n );
//****************************************************************************80
int main ( int argc, char *argv[] )
//****************************************************************************80
//
// Purpose:
//
// MAIN is the main program for COMPUTE_PI.
//
// Discussion:
//
// COMPUTE_PI estimates the value of PI.
//
// This program uses Open MP parallelization directives.
//
// It should run properly whether parallelization is used or not.
//
// However, the parallel version computes the sum in a different
// order than the serial version; some of the quantities added are
// quite small, and so this will affect the accuracy of the results.
//
// The single precision code is noticeably less accurate than the
// double code. Again, the amount of difference depends
// on whether the computation is done in parallel or not.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 18 April 2009
//
// Author:
//
// John Burkardt
//
{
int r8_logn_max = 10;
cout << "\n";
cout << "COMPUTE_PI\n";
cout << " C++/OpenMP version\n";
cout << "\n";
cout << " Estimate the value of PI by summing a series.\n";
cout << "\n";
cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n";
cout << " Number of threads = " << omp_get_max_threads ( ) << "\n";
r8_test ( r8_logn_max );
//
// Terminate.
//
cout << "\n";
cout << "COMPUTE_PI\n";
cout << " Normal end of execution.\n";
return 0;
}
//****************************************************************************80
void r8_test ( int logn_max )
//****************************************************************************80
//
// Purpose:
//
// R8_TEST estimates the value of PI using double.
//
// Discussion:
//
// PI is estimated using N terms. N is increased from 10^2 to 10^LOGN_MAX.
// The calculation is repeated using both sequential and Open MP enabled code.
// Wall clock time is measured by calling SYSTEM_CLOCK.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 13 November 2007
//
// Author:
//
// John Burkardt
//
{
double error;
double estimate;
int logn;
char mode[4];
int n;
double r8_pi = 3.141592653589793;
double wtime;
cout << "\n";
cout << "R8_TEST:\n";
cout << " Estimate the value of PI,\n";
cout << " using double arithmetic.\n";
cout << "\n";
cout << " N = number of terms computed and added;\n";
cout << "\n";
cout << " MODE = SEQ for sequential code;\n";
cout << " MODE = OMP for Open MP enabled code;\n";
cout << " (performance depends on whether Open MP is used,\n";
cout << " and how many processes are available)\n";
cout << "\n";
cout << " ESTIMATE = the computed estimate of PI;\n";
cout << "\n";
cout << " ERROR = ( the computed estimate - PI );\n";
cout << "\n";
cout << " TIME = elapsed wall clock time;\n";
cout << "\n";
cout << " Note that you can''t increase N forever, because:\n";
cout << " A) ROUNDOFF starts to be a problem, and\n";
cout << " B) maximum integer size is a problem.\n";
cout << "\n";
cout << " N Mode Estimate Error Time\n";
cout << "\n";
n = 1;
for ( logn = 1; logn <= logn_max; logn++ )
{
//
// Note that when I set N = 10**LOGN directly, rather than using
// recursion, I got inaccurate values of N when LOGN was "large",
// that is, for LOGN = 10, despite the fact that N itself was
// a KIND = 8 integer!
//
// Sequential calculation.
//
strcpy ( mode, "SEQ" );
wtime = omp_get_wtime ( );
estimate = r8_pi_est_seq ( n );
wtime = omp_get_wtime ( ) - wtime;
error = r8_abs ( estimate - r8_pi );
cout << " " << setw(14) << n
<< " " << setw(3) << mode
<< " " << setw(14) << estimate
<< " " << setw(14) << error
<< " " << setw(14) << wtime << "\n";
//
// Open MP enabled calculation.
//
strcpy ( mode, "OMP" );
wtime = omp_get_wtime ( );
estimate = r8_pi_est_omp ( n );
wtime = omp_get_wtime ( ) - wtime;
error = r8_abs ( estimate - r8_pi );
cout << " " << setw(14) << n
<< " " << setw(3) << mode
<< " " << setw(14) << estimate
<< " " << setw(14) << error
<< " " << setw(14) << wtime << "\n";
n = n * 10;
}
return;
}
//****************************************************************************80
double r8_abs ( double r8 )
//****************************************************************************80
//
// Purpose:
//
// R8_ABS returns the absolute value of a double.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 14 November 2007
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, double R8, a real number.
//
// Output, double R8_ABS, the absolute value of R4.
//
{
double value;
if ( 0.0 <= r8 )
{
value = r8;
}
else
{
value = - r8;
}
return value;
}
//****************************************************************************80
double r8_pi_est_omp ( int n )
//****************************************************************************80
//
// Purpose:
//
// R8_PI_EST_OMP estimates the value of PI, using Open MP.
//
// Discussion:
//
// The calculation is based on the formula for the indefinite integral:
//
// Integral 1 / ( 1 + X**2 ) dx = Arctan ( X )
//
// Hence, the definite integral
//
// Integral ( 0 <= X <= 1 ) 1 / ( 1 + X**2 ) dx
// = Arctan ( 1 ) - Arctan ( 0 )
// = PI / 4.
//
// A standard way to approximate an integral uses the midpoint rule.
// If we create N equally spaced intervals of width 1/N, then the
// midpoint of the I-th interval is
//
// X(I) = (2*I-1)/(2*N).
//
// The approximation for the integral is then:
//
// Sum ( 1 <= I <= N ) (1/N) * 1 / ( 1 + X(I)**2 )
//
// In order to compute PI, we multiply this by 4; we also can pull out
// the factor of 1/N, so that the formula you see in the program looks like:
//
// ( 4 / N ) * Sum ( 1 <= I <= N ) 1 / ( 1 + X(I)**2 )
//
// Until roundoff becomes an issue, greater accuracy can be achieved by
// increasing the value of N.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 13 November 2007
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of terms to add up.
//
// Output, double R8_PI_EST_OMP, the estimated value of pi.
//
{
double h;
double estimate;
int i;
double sum2;
double x;
h = 1.0 / ( double ) ( 2 * n );
sum2 = 0.0;
# pragma omp parallel \
shared ( h, n ) \
private ( i, x )
# pragma omp for reduction ( + : sum2 )
for ( i = 1; i <= n; i++ )
{
x = h * ( double ) ( 2 * i - 1 );
sum2 = sum2 + 1.0 / ( 1.0 + x * x );
}
estimate = 4.0 * sum2 / ( double ) ( n );
return estimate;
}
//****************************************************************************80
double r8_pi_est_seq ( int n )
//****************************************************************************80
//
// Purpose:
//
// R8_PI_EST_SEQ estimates the value of PI, using sequential execution.
//
// Discussion:
//
// The calculation is based on the formula for the indefinite integral:
//
// Integral 1 / ( 1 + X**2 ) dx = Arctan ( X )
//
// Hence, the definite integral
//
// Integral ( 0 <= X <= 1 ) 1 / ( 1 + X**2 ) dx
// = Arctan ( 1 ) - Arctan ( 0 )
// = PI / 4.
//
// A standard way to approximate an integral uses the midpoint rule.
// If we create N equally spaced intervals of width 1/N, then the
// midpoint of the I-th interval is
//
// X(I) = (2*I-1)/(2*N).
//
// The approximation for the integral is then:
//
// Sum ( 1 <= I <= N ) (1/N) * 1 / ( 1 + X(I)**2 )
//
// In order to compute PI, we multiply this by 4; we also can pull out
// the factor of 1/N, so that the formula you see in the program looks like:
//
// ( 4 / N ) * Sum ( 1 <= I <= N ) 1 / ( 1 + X(I)**2 )
//
// Until roundoff becomes an issue, greater accuracy can be achieved by
// increasing the value of N.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 13 November 2007
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, integer N, the number of terms to add up.
//
// Output, double R8_PI_EST_SEQ, the estimated value of pi.
//
{
double h;
double estimate;
int i;
double sum2;
double x;
h = 1.0 / ( double ) ( 2 * n );
sum2 = 0.0;
for ( i = 1; i <= n; i++ )
{
x = h * ( double ) ( 2 * i - 1 );
sum2 = sum2 + 1.0 / ( 1.0 + x * x );
}
estimate = 4.0 * sum2 / ( double ) ( n );
return estimate;
}