-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathprime_openmp.cpp
211 lines (182 loc) · 4.01 KB
/
prime_openmp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <omp.h>
using namespace std;
int main ( int argc, char *argv[] );
void prime_number_sweep ( int n_lo, int n_hi, int n_factor );
int prime_number ( int n );
//****************************************************************************80
int main ( int argc, char *argv[] )
//****************************************************************************80
//
// Purpose:
//
// MAIN is the main program for PRIME_OPENMP.
//
// Discussion:
//
// This program calls a version of PRIME_NUMBER that includes
// OpenMP directives for parallel processing.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 06 August 2009
//
// Author:
//
// John Burkardt
//
{
int n_factor;
int n_hi;
int n_lo;
cout << "\n";
cout << "PRIME_OPENMP\n";
cout << " C++/OpenMP version\n";
cout << "\n";
cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n";
cout << " Number of threads = " << omp_get_max_threads ( ) << "\n";
n_lo = 1;
n_hi = 131072;
n_factor = 2;
prime_number_sweep ( n_lo, n_hi, n_factor );
n_lo = 5;
n_hi = 500000;
n_factor = 10;
prime_number_sweep ( n_lo, n_hi, n_factor );
//
// Terminate.
//
cout << "\n";
cout << "PRIME_OPENMP\n";
cout << " Normal end of execution.\n";
return 0;
}
//****************************************************************************80
void prime_number_sweep ( int n_lo, int n_hi, int n_factor )
//****************************************************************************80
//
// Purpose:
//
// PRIME_NUMBER_SWEEP does repeated calls to PRIME_NUMBER.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 06 August 2009
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N_LO, the first value of N.
//
// Input, int N_HI, the last value of N.
//
// Input, int N_FACTOR, the factor by which to increase N after
// each iteration.
//
{
int i;
int n;
int primes;
double wtime;
cout << "\n";
cout << "TEST01\n";
cout << " Call PRIME_NUMBER to count the primes from 1 to N.\n";
cout << "\n";
cout << " N Pi Time\n";
cout << "\n";
n = n_lo;
while ( n <= n_hi )
{
wtime = omp_get_wtime ( );
primes = prime_number ( n );
wtime = omp_get_wtime ( ) - wtime;
cout << " " << setw(8) << n
<< " " << setw(8) << primes
<< " " << setw(14) << wtime << "\n";
n = n * n_factor;
}
return;
}
//****************************************************************************80
int prime_number ( int n )
//****************************************************************************80
//
// Purpose:
//
// PRIME_NUMBER returns the number of primes between 1 and N.
//
// Discussion:
//
// A naive algorithm is used.
//
// Mathematica can return the number of primes less than or equal to N
// by the command PrimePi[N].
//
// N PRIME_NUMBER
//
// 1 0
// 10 4
// 100 25
// 1,000 168
// 10,000 1,229
// 100,000 9,592
// 1,000,000 78,498
// 10,000,000 664,579
// 100,000,000 5,761,455
// 1,000,000,000 50,847,534
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 21 May 2009
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the maximum number to check.
//
// Output, int PRIME_NUMBER, the number of prime numbers up to N.
//
{
int i;
int j;
int prime;
int total = 0;
# pragma omp parallel \
shared ( n ) \
private ( i, j, prime )
# pragma omp for reduction ( + : total )
for ( i = 2; i <= n; i++ )
{
prime = 1;
for ( j = 2; j < i; j++ )
{
if ( i % j == 0 )
{
prime = 0;
break;
}
}
total = total + prime;
}
return total;
}