-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsandia_sgmg_index_prb.cpp
529 lines (492 loc) · 14.4 KB
/
sandia_sgmg_index_prb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# include "sandia_rules.hpp"
# include "sandia_rules2.hpp"
# include "sandia_sgmg.hpp"
# include <cstdlib>
# include <iomanip>
# include <iostream>
# include <cmath>
//
// Two global variables needed to support the "parameter" function.
//
double *P;
int *NP;
int main ( );
void sgmg_index_tests ( double tol );
void sgmg_index_test
(
int dim_num,
int level_max_min,
int level_max_max,
int growth,
void ( *gw_compute_points[] ) ( int order, int dim, double w[] ),
double tol,
int ( *gw_compute_order[] ) ( int level, int growth )
);
typedef void ( *GWPointer ) ( int order, int dim, double w[] );
typedef int ( *GWPointer2 ) ( int level, int growth );
//****************************************************************************80
int main ( )
//****************************************************************************80
//
// Purpose:
//
// MAIN tests SGMG_INDEX.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 01 January 2012
//
// Author:
//
// John Burkardt
//
// Reference:
//
// Fabio Nobile, Raul Tempone, Clayton Webster,
// A Sparse Grid Stochastic Collocation Method for Partial Differential
// Equations with Random Input Data,
// SIAM Journal on Numerical Analysis,
// Volume 46, Number 5, 2008, pages 2309-2345.
//
{
double tol;
webbur::timestamp ( );
std::cout << "\n";
std::cout << "SGMG_INDEX_PRB\n";
std::cout << " C++ version\n";
//
// Compute the INDEX and ORDER arrays which describe, for a given abscissa
// in a sparse grid, for each component of that abscissa, the index of the
// 1D component as a member of a particular 1D quadrature rule of given ORDER.
//
sgmg_index_tests ( tol );
//
// Terminate.
//
std::cout << "\n";
std::cout << "SGMG_INDEX_PRB\n";
std::cout << " Normal end of execution.\n";
std::cout << "\n";
webbur::timestamp ( );
return 0;
}
namespace webbur
{
//****************************************************************************80
double parameter ( int dim, int offset )
//****************************************************************************80
//
// Purpose:
//
// PARAMETER is a user-supplied routine to retrieve parameters.
//
// Discussion:
//
// The declaration for this function is in SANDIA_RULES.H
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 02 April 2010
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int DIM, the spatial dimension.
//
// Input, int OFFSET, the offset of the parameter within the
// spatial dimension.
//
// Output, double PARAMETER, the value of the OFFSET-th parameter
// associated with the DIM-th dimension.
//
{
int i;
int j;
double value;
j = 0;
for ( i = 0; i < dim; i++ )
{
j = j + NP[i];
}
value = P[j+offset];
return value;
}
}
//****************************************************************************80
void sgmg_index_tests ( double tol )
//****************************************************************************80
//
// Purpose:
//
// SGMG_INDEX_TESTS calls SGMG_INDEX_TEST.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 01 January 2012
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, double TOL, a tolerance for point equality.
// A value of sqrt ( eps ) is reasonable, and will allow the code to
// consolidate points which are equal, or very nearly so. A value of
// -1.0, on the other hand, will force the code to use every point,
// regardless of duplication.
//
{
int dim_num;
int growth;
GWPointer2 *gw_compute_order;
GWPointer *gw_compute_points;
int level_max_max;
int level_max_min;
int np_sum;
std::cout << "\n";
std::cout << "SGMG_INDEX_TESTS\n";
std::cout << " Call SGMG_INDEX_TEST with various arguments.\n";
std::cout << "\n";
std::cout << " All tests will use a point equality tolerance of " << tol << "\n";
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 2;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::clenshaw_curtis_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_exp_cc;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 2;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::patterson_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_exp_gp;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::legendre_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_linear_wn;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::laguerre_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_linear_nn;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::gen_laguerre_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_linear_nn;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 1;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
P[0] = 1.5;
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::fejer2_points;
gw_compute_points[1] = webbur::jacobi_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_f2;
gw_compute_order[1] = webbur::level_to_order_linear_nn;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 2;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
P[0] = 0.5;
P[1] = 1.5;
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 2;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::gen_hermite_points;
gw_compute_points[1] = webbur::hermite_genz_keister_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_linear_wn;
gw_compute_order[1] = webbur::level_to_order_exp_hgk;
NP = new int[dim_num];
NP[0] = 1;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
P[0] = 2.0;
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
dim_num = 3;
level_max_min = 0;
level_max_max = 2;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::clenshaw_curtis_points;
gw_compute_points[1] = webbur::legendre_points;
gw_compute_points[2] = webbur::hermite_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_cc;
gw_compute_order[1] = webbur::level_to_order_linear_wn;
gw_compute_order[2] = webbur::level_to_order_linear_wn;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
NP[3] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
//
// Dimension 2, Level 3, Slow Exponential Growth.
//
dim_num = 2;
level_max_min = 3;
level_max_max = 3;
growth = 0;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::patterson_points;
gw_compute_points[1] = webbur::patterson_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_gp;
gw_compute_order[1] = webbur::level_to_order_exp_gp;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
//
// Dimension 2, Level 3, Moderate Exponential Growth.
//
dim_num = 2;
level_max_min = 3;
level_max_max = 3;
growth = 1;
gw_compute_points = new GWPointer[dim_num];
gw_compute_points[0] = webbur::patterson_points;
gw_compute_points[1] = webbur::patterson_points;
gw_compute_order = new GWPointer2[dim_num];
gw_compute_order[0] = webbur::level_to_order_exp_gp;
gw_compute_order[1] = webbur::level_to_order_exp_gp;
NP = new int[dim_num];
NP[0] = 0;
NP[1] = 0;
np_sum = webbur::i4vec_sum ( dim_num, NP );
P = new double[np_sum];
sgmg_index_test ( dim_num, level_max_min, level_max_max, growth,
gw_compute_points, tol, gw_compute_order );
delete [] gw_compute_order;
delete [] gw_compute_points;
delete [] NP;
delete [] P;
return;
}
//***************************************************************************80
void sgmg_index_test
(
int dim_num,
int level_max_min,
int level_max_max,
int growth,
void ( *gw_compute_points[] ) ( int order, int dim, double w[] ),
double tol,
int ( *gw_compute_order[] ) ( int level, int growth )
)
//***************************************************************************80
//
// Purpose:
//
// SGMG_INDEX_TEST tests SGMG_INDEX.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 01 January 2012
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int DIM_NUM, the spatial dimension.
//
// Input, int LEVEL_MAX_MIN, LEVEL_MAX_MAX, the minimum and
// maximum values of LEVEL_MAX.
//
// Input, int GROWTH, the growth rule.
// 0, slow;
// 1, moderate;
// 2, full.
//
// Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ),
// an array of pointers to functions which return the 1D quadrature points
// associated with each spatial dimension.
//
// Input, double TOL, a tolerance for point equality.
//
// Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ),
// an array of pointers to functions which return the order of the
// 1D quadrature rule of a given level and growth rule.
//
{
int dim;
int i;
int level_max;
int point;
int point_num;
int point_total_num;
int *sparse_index;
int *sparse_order;
int *sparse_unique_index;
std::cout << "\n";
std::cout << "SGMG_INDEX_TEST\n";
std::cout << " SGMG_INDEX returns index and order vectors that\n";
std::cout << " identify each point in a multidimensional sparse grid \n";
std::cout << " with mixed factors.\n";
std::cout << "\n";
std::cout << " Each sparse grid is of spatial dimension DIM_NUM,\n";
std::cout << " and is made up of product grids of levels up to LEVEL_MAX.\n";
for ( level_max = level_max_min; level_max <= level_max_max; level_max++ )
{
point_total_num = webbur::sgmg_size_total ( dim_num, level_max, growth,
gw_compute_order );
point_num = webbur::sgmg_size ( dim_num, level_max, gw_compute_points, tol,
growth, gw_compute_order );
sparse_unique_index = new int[point_total_num];
webbur::sgmg_unique_index ( dim_num, level_max, gw_compute_points, tol,
point_num, point_total_num, growth, gw_compute_order, sparse_unique_index );
sparse_order = new int[dim_num*point_num];
sparse_index = new int[dim_num*point_num];
webbur::sgmg_index ( dim_num, level_max, point_num, point_total_num,
sparse_unique_index, growth, gw_compute_order, sparse_order, sparse_index );
std::cout << "\n";
std::cout << " For LEVEL_MAX = " << level_max << "\n";
std::cout << "\n";
for ( point = 0; point < point_num; point++ )
{
std::cout << " " << std::setw(4) << point << " ";
for ( dim = 0; dim < dim_num; dim++ )
{
std::cout << " " << std::setw(3) << sparse_index[dim+point*dim_num]
<< " /" << std::setw(3) << sparse_order[dim+point*dim_num];
}
std::cout << "\n";
}
delete [] sparse_index;
delete [] sparse_order;
delete [] sparse_unique_index;
}
return;
}