-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathspiral_data.cpp
747 lines (682 loc) · 15.9 KB
/
spiral_data.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# include <cmath>
# include <cstdlib>
# include <cstring>
# include <ctime>
# include <fstream>
# include <iostream>
using namespace std;
# include "spiral_data.hpp"
//****************************************************************************80
void grid_2d ( int x_num, double x_lo, double x_hi, int y_num, double y_lo,
double y_hi, double x[], double y[] )
//****************************************************************************80
//
// Purpose:
//
// GRID_2D returns a regular 2D grid.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 19 January 2015
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int X_NUM, the number of X values to use.
//
// Input, double X_LO, X_HI, the range of X values.
//
// Input, int Y_NUM, the number of Y values to use.
//
// Input, double Y_LO, Y_HI, the range of Y values.
//
// Output, double X[X_NUM*Y_NUM], Y[X_NUM*Y_NUM],
// the coordinates of the grid.
//
{
int i;
int j;
double xi;
double yj;
if ( x_num == 1 )
{
for ( j = 0; j < y_num; j++ )
{
for ( i = 0; i < x_num; i++ )
{
x[i+j*x_num] = ( x_lo + x_hi ) / 2.0;
}
}
}
else
{
for ( i = 0; i < x_num; i++ )
{
xi = ( ( double ) ( x_num - i - 1 ) * x_lo
+ ( double ) ( i ) * x_hi )
/ ( double ) ( x_num - 1 );
for ( j = 0; j < y_num; j++ )
{
x[i+j*x_num] = xi;
}
}
}
if ( y_num == 1 )
{
for ( j = 0; j < y_num; j++ )
{
for ( i = 0; i < x_num; i++ )
{
y[i+j*x_num] = ( y_lo + y_hi ) / 2.0;
}
}
}
else
{
for ( j = 0; j < y_num; j++ )
{
yj = ( ( double ) ( y_num - j - 1 ) * y_lo
+ ( double ) ( j ) * y_hi )
/ ( double ) ( y_num - 1 );
for ( i = 0; i < x_num; i++ )
{
y[i+j*x_num] = yj;
}
}
}
return;
}
//****************************************************************************80
double r8vec_amax ( int n, double a[] )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_AMAX returns the maximum absolute value in an R8VEC.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 18 September 2005
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of entries in the array.
//
// Input, double A[N], the array.
//
// Output, double AMAX, the value of the entry
// of largest magnitude.
//
{
double amax;
int i;
amax = 0.0;
for ( i = 0; i < n; i++ )
{
if ( amax < fabs ( a[i] ) )
{
amax = fabs ( a[i] );
}
}
return amax;
}
//****************************************************************************80
double r8vec_amin ( int n, double a[] )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_AMIN returns the minimum absolute value in an R8VEC.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 18 September 2005
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of entries in the array.
//
// Input, double A[N], the array.
//
// Output, double R8VEC_AMIN, the value of the entry
// of smallest magnitude.
//
{
double amin;
int i;
const double r8_huge = 1.79769313486231571E+308;
for ( i = 0; i < n; i++ )
{
if ( fabs ( a[i] ) < amin )
{
amin = fabs ( a[i] );
}
}
return amin;
}
//****************************************************************************80
double r8vec_max ( int n, double r8vec[] )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_MAX returns the value of the maximum element in an R8VEC.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 22 August 2010
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of entries in the array.
//
// Input, double R8VEC[N], a pointer to the first entry of the array.
//
// Output, double R8VEC_MAX, the value of the maximum element. This
// is set to 0.0 if N <= 0.
//
{
int i;
double value;
value = r8vec[0];
for ( i = 1; i < n; i++ )
{
if ( value < r8vec[i] )
{
value = r8vec[i];
}
}
return value;
}
//****************************************************************************80
double r8vec_min ( int n, double r8vec[] )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_MIN returns the value of the minimum element in an R8VEC.
//
// Discussion:
//
// An R8VEC is a vector of R8's.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 02 July 2005
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of entries in the array.
//
// Input, double R8VEC[N], the array to be checked.
//
// Output, double R8VEC_MIN, the value of the minimum element.
//
{
int i;
double value;
value = r8vec[0];
for ( i = 1; i < n; i++ )
{
if ( r8vec[i] < value )
{
value = r8vec[i];
}
}
return value;
}
//****************************************************************************80
double *r8vec_uniform_ab_new ( int n, double a, double b, int &seed )
//****************************************************************************80
//
// Purpose:
//
// R8VEC_UNIFORM_AB_NEW returns a scaled pseudorandom R8VEC.
//
// Discussion:
//
// Each dimension ranges from A to B.
//
// This routine implements the recursion
//
// seed = ( 16807 * seed ) mod ( 2^31 - 1 )
// u = seed / ( 2^31 - 1 )
//
// The integer arithmetic never requires more than 32 bits,
// including a sign bit.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 09 April 2012
//
// Author:
//
// John Burkardt
//
// Reference:
//
// Paul Bratley, Bennett Fox, Linus Schrage,
// A Guide to Simulation,
// Second Edition,
// Springer, 1987,
// ISBN: 0387964673,
// LC: QA76.9.C65.B73.
//
// Bennett Fox,
// Algorithm 647:
// Implementation and Relative Efficiency of Quasirandom
// Sequence Generators,
// ACM Transactions on Mathematical Software,
// Volume 12, Number 4, December 1986, pages 362-376.
//
// Pierre L'Ecuyer,
// Random Number Generation,
// in Handbook of Simulation,
// edited by Jerry Banks,
// Wiley, 1998,
// ISBN: 0471134031,
// LC: T57.62.H37.
//
// Peter Lewis, Allen Goodman, James Miller,
// A Pseudo-Random Number Generator for the System/360,
// IBM Systems Journal,
// Volume 8, Number 2, 1969, pages 136-143.
//
// Parameters:
//
// Input, int N, the number of entries in the vector.
//
// Input, double A, B, the lower and upper limits of the pseudorandom values.
//
// Input/output, int &SEED, a seed for the random number generator.
//
// Output, double R8VEC_UNIFORM_AB_NEW[N], the vector of pseudorandom values.
//
{
int i;
const int i4_huge = 2147483647;
int k;
double *r;
if ( seed == 0 )
{
cerr << "\n";
cerr << "R8VEC_UNIFORM_AB_NEW - Fatal error!\n";
cerr << " Input value of SEED = 0.\n";
exit ( 1 );
}
r = new double[n];
for ( i = 0; i < n; i++ )
{
k = seed / 127773;
seed = 16807 * ( seed - k * 127773 ) - k * 2836;
if ( seed < 0 )
{
seed = seed + i4_huge;
}
r[i] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10;
}
return r;
}
//****************************************************************************80
void resid_spiral ( int n, double x[], double y[], double c, double pr[] )
//****************************************************************************80
//
// Purpose:
//
// RESID_SPIRAL computes the residual for a spiral velocity vector field.
//
// Discussion:
//
// Note that the continuous velocity field (U,V)(X,Y) that is discretely
// sampled here satisfies the homogeneous continuity equation, that is,
// it has zero divergence. In other words:
//
// dU/dX + dV/dY = 0.
//
// This is by construction, since we have
//
// U(X,Y) = 10 * d/dY ( PHI(X) * PHI(Y) )
// V(X,Y) = -10 * d/dX ( PHI(X) * PHI(Y) )
//
// which guarantees zero divergence.
//
// The underlying function PHI is defined by
//
// PHI(Z) = ( 1 - cos ( C * pi * Z ) ) * ( 1 - Z )^2
//
// where C is a parameter.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 19 January 2015
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of evaluation points.
//
// Input, double X[N], Y[N], the coordinates of the
// evaluation points.
//
// Input, double C, a parameter, typically between 0 and 2 * PI.
//
// Output, double PR[N], the residual in the continuity equation.
//
{
int i;
const double r8_pi = 3.141592653589793;
double u;
double ux;
double v;
double vy;
for ( i = 0; i < n; i++ )
{
u = 10.0 * ( 1.0 - cos ( c * r8_pi * x[i] ) )
* pow ( 1.0 - x[i], 2 )
* (
c * r8_pi * sin ( c * r8_pi * y[i] ) * pow ( 1.0 - y[i], 2 )
- ( 1.0 - cos ( c * r8_pi * y[i] ) )
* 2.0 * ( 1.0 - y[i] )
);
ux = 10.0 *
(
c * r8_pi * sin ( c * r8_pi * x[i] ) * pow ( 1.0 - x[i], 2 )
- ( 1.0 - cos ( c * r8_pi * x[i] ) )
* 2.0 * ( 1.0 - x[i] )
)
*
(
c * r8_pi * sin ( c * r8_pi * y[i] ) * pow ( 1.0 - y[i], 2 )
- ( 1.0 - cos ( c * r8_pi * y[i] ) )
* 2.0 * ( 1.0 - y[i] )
);
v = - 10.0 * ( 1.0 - cos ( c * r8_pi * y[i] ) )
* pow ( 1.0 - y[i], 2 )
* (
c * r8_pi * sin ( c * r8_pi * x[i] ) * pow ( 1.0 - x[i], 2 )
- ( 1.0 - cos ( c * r8_pi * x[i] ) )
* 2.0 * ( 1.0 - x[i] )
);
vy = - 10.0 *
(
c * r8_pi * sin ( c * r8_pi * x[i] ) * pow ( 1.0 - x[i], 2 )
- ( 1.0 - cos ( c * r8_pi * x[i] ) )
* 2.0 * ( 1.0 - x[i] )
)
*
(
c * r8_pi * sin ( c * r8_pi * y[i] ) * pow ( 1.0 - y[i], 2 )
- ( 1.0 - cos ( c * r8_pi * y[i] ) )
* 2.0 * ( 1.0 - y[i] )
);
pr[i] = ux + vy;
}
return;
}
//****************************************************************************80
void spiral_gnuplot ( string header, int n, double x[], double y[], double u[],
double v[], double s )
//****************************************************************************80
//
// Purpose:
//
// SPIRAL_GNUPLOT writes the spiral vector field to files for GNUPLOT.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 20 January 2015
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, string HEADER, a header to be used to name the files.
//
// Input, int N, the number of evaluation points.
//
// Input, double X[N], Y[N], the coordinates of the evaluation points.
//
// Input, double U[N], V[N], the velocity components.
//
// Input, double S, a scale factor for the velocity vectors.
//
{
string command_filename;
ofstream command_unit;
string data_filename;
ofstream data_unit;
int i;
string plot_filename;
//
// Write the data file.
//
data_filename = header + "_data.txt";
data_unit.open ( data_filename.c_str ( ) );
for ( i = 0; i < n; i++ )
{
data_unit << " " << x[i]
<< " " << y[i]
<< " " << s * u[i]
<< " " << s * v[i] << "\n";
}
data_unit.close ( );
cout << "\n";
cout << " Data written to '" << data_filename << "'\n";
//
// Write the command file.
//
command_filename = header + "_commands.txt";
plot_filename = header + ".png";
command_unit.open ( command_filename.c_str ( ) );
command_unit << "# " << command_filename << "\n";
command_unit << "#\n";
command_unit << "set term png\n";
command_unit << "set output '" << plot_filename << "'\n";
command_unit << "#\n";
command_unit << "# Add titles and labels.\n";
command_unit << "#\n";
command_unit << "set xlabel '<--- X --->'\n";
command_unit << "set ylabel '<--- Y --->'\n";
command_unit << "set title 'Spiral velocity flow'\n";
command_unit << "unset key\n";
command_unit << "#\n";
command_unit << "# Add grid lines.\n";
command_unit << "#\n";
command_unit << "set grid\n";
command_unit << "set size ratio -1\n";
command_unit << "#\n";
command_unit << "# Timestamp the plot.\n";
command_unit << "#\n";
command_unit << "set timestamp\n";
command_unit << "plot '" << data_filename
<< "' using 1:2:3:4 with vectors \\\n";
command_unit << " head filled lt 2 linecolor rgb 'blue'\n";
command_unit << "quit\n";
command_unit.close ( );
cout << " Commands written to '" << command_filename << "'\n";
return;
}
//****************************************************************************80
void timestamp ( )
//****************************************************************************80
//
// Purpose:
//
// TIMESTAMP prints the current YMDHMS date as a time stamp.
//
// Example:
//
// 31 May 2001 09:45:54 AM
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 08 July 2009
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// None
//
{
# define TIME_SIZE 40
static char time_buffer[TIME_SIZE];
const struct std::tm *tm_ptr;
size_t len;
std::time_t now;
now = std::time ( NULL );
tm_ptr = std::localtime ( &now );
len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr );
std::cout << time_buffer << "\n";
return;
# undef TIME_SIZE
}
//****************************************************************************80
void uv_spiral ( int n, double x[], double y[], double c, double u[],
double v[] )
//****************************************************************************80
//
// Purpose:
//
// UV_SPIRAL computes a spiral velocity vector field.
//
// Discussion:
//
// Note that the continuous velocity field (U,V)(X,Y) that is discretely
// sampled here satisfies the homogeneous continuity equation, that is,
// it has zero divergence. In other words:
//
// dU/dX + dV/dY = 0.
//
// This is by construction, since we have
//
// U(X,Y) = 10 * d/dY ( PHI(X) * PHI(Y) )
// V(X,Y) = -10 * d/dX ( PHI(X) * PHI(Y) )
//
// which guarantees zero divergence.
//
// The underlying function PHI is defined by
//
// PHI(Z) = ( 1 - cos ( C * pi * Z ) ) * ( 1 - Z )^2
//
// where C is a parameter.
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 20 January 2015
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// Input, int N, the number of evaluation points.
//
// Input, double X[N], Y[N], the coordinates of the
// evaluation points.
//
// Input, double C, a parameter, typically between 0 and 2 * PI.
//
// Output, double U[N], V[N], the velocity components.
//
{
int i;
const double r8_pi = 3.141592653589793;
for ( i = 0; i < n; i++ )
{
u[i] = 10.0 * ( 1.0 - cos ( c * r8_pi * x[i] ) )
* pow ( 1.0 - x[i], 2 )
* (
c * r8_pi * sin ( c * r8_pi * y[i] ) * pow ( 1.0 - y[i], 2 )
- ( 1.0 - cos ( c * r8_pi * y[i] ) )
* 2.0 * ( 1.0 - y[i] )
);
v[i] = - 10.0 * ( 1.0 - cos ( c * r8_pi * y[i] ) )
* pow ( 1.0 - y[i], 2 )
* (
c * r8_pi * sin ( c * r8_pi * x[i] ) * pow ( 1.0 - x[i], 2 )
- ( 1.0 - cos ( c * r8_pi * x[i] ) )
* 2.0 * ( 1.0 - x[i] )
);
}
return;
}