-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmetrics.py
121 lines (106 loc) · 4.66 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
This script defines the evaluation metrics and the loss functions
"""
import torch
from kornia.losses import ssim as ssim_
class NerfLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.loss = torch.nn.MSELoss(reduction='mean')
def forward(self, inputs, targets):
loss_dict = {}
loss_dict['coarse_color'] = self.loss(inputs['rgb_coarse'], targets)
if 'rgb_fine' in inputs:
loss_dict['fine_color'] = self.loss(inputs['rgb_fine'], targets)
loss = sum(l for l in loss_dict.values())
return loss, loss_dict
def uncertainty_aware_loss(loss_dict, inputs, gt_rgb, typ, beta_min=0.05):
beta = torch.sum(inputs[f'weights_{typ}'].unsqueeze(-1) * inputs['beta_coarse'], -2) + beta_min
loss_dict[f'{typ}_color'] = ((inputs[f'rgb_{typ}'] - gt_rgb) ** 2 / (2 * beta ** 2)).mean()
loss_dict[f'{typ}_logbeta'] = (3 + torch.log(beta).mean()) / 2 # +3 to make c_b positive since beta_min = 0.05
return loss_dict
def solar_correction(loss_dict, inputs, typ, lambda_sc=0.05):
# computes the solar correction terms defined in Shadow NeRF and adds them to the dictionary of losses
sun_sc = inputs[f'sun_sc_{typ}'].squeeze()
term2 = torch.sum(torch.square(inputs[f'transparency_sc_{typ}'].detach() - sun_sc), -1)
term3 = 1 - torch.sum(inputs[f'weights_sc_{typ}'].detach() * sun_sc, -1)
loss_dict[f'{typ}_sc_term2'] = lambda_sc/3. * torch.mean(term2)
loss_dict[f'{typ}_sc_term3'] = lambda_sc/3. * torch.mean(term3)
return loss_dict
class SNerfLoss(torch.nn.Module):
def __init__(self, lambda_sc=0.05):
super().__init__()
self.lambda_sc = lambda_sc
self.loss = torch.nn.MSELoss(reduction='mean')
def forward(self, inputs, targets):
loss_dict = {}
typ = 'coarse'
loss_dict[f'{typ}_color'] = self.loss(inputs[f'rgb_{typ}'], targets)
if self.lambda_sc > 0:
loss_dict = solar_correction(loss_dict, inputs, typ, self.lambda_sc)
if 'rgb_fine' in inputs:
typ = 'fine'
loss_dict[f'{typ}_color'] = self.loss(inputs[f'rgb_{typ}'], targets)
if self.lambda_sc > 0:
loss_dict = solar_correction(loss_dict, inputs, typ, self.lambda_sc)
loss = sum(l for l in loss_dict.values())
return loss, loss_dict
class SatNerfLoss(torch.nn.Module):
def __init__(self, lambda_sc=0.0):
super().__init__()
self.lambda_sc = lambda_sc
def forward(self, inputs, targets):
loss_dict = {}
typ = 'coarse'
loss_dict = uncertainty_aware_loss(loss_dict, inputs, targets, typ)
if self.lambda_sc > 0:
loss_dict = solar_correction(loss_dict, inputs, typ, self.lambda_sc)
if 'rgb_fine' in inputs:
typ = 'fine'
loss_dict = uncertainty_aware_loss(loss_dict, inputs, targets, typ)
if self.lambda_sc > 0:
loss_dict = solar_correction(loss_dict, inputs, typ, self.lambda_sc)
loss = sum(l for l in loss_dict.values())
return loss, loss_dict
class DepthLoss(torch.nn.Module):
def __init__(self, lambda_ds=1.0):
super().__init__()
self.lambda_ds = lambda_ds/3.
self.loss = torch.nn.MSELoss(reduce=False)
def forward(self, inputs, targets, weights=1.):
loss_dict = {}
typ = 'coarse'
loss_dict[f'{typ}_ds'] = self.loss(inputs['depth_coarse'], targets)
if 'depth_fine' in inputs:
typ = 'fine'
loss_dict[f'{typ}_ds'] = self.loss(inputs['depth_fine'], targets)
# apply weights
for k in loss_dict.keys():
loss_dict[k] = self.lambda_ds * torch.mean(weights * loss_dict[k])
loss = sum(l for l in loss_dict.values())
return loss, loss_dict
def load_loss(args):
if args.model == "nerf":
loss_function = NerfLoss()
elif args.model == "s-nerf":
loss_function = SNerfLoss(lambda_sc=args.sc_lambda)
elif args.model == "sat-nerf":
loss_function = SatNerfLoss(lambda_sc=args.sc_lambda)
else:
raise ValueError(f'model {args.model} is not valid')
return loss_function
def mse(image_pred, image_gt, valid_mask=None, reduction='mean'):
value = (image_pred-image_gt)**2
if valid_mask is not None:
value = value[valid_mask]
if reduction == 'mean':
return torch.mean(value)
return value
def psnr(image_pred, image_gt, valid_mask=None, reduction='mean'):
return -10*torch.log10(mse(image_pred, image_gt, valid_mask, reduction))
def ssim(image_pred, image_gt):
"""
image_pred and image_gt: (1, 3, H, W)
important: kornia==0.5.3
"""
return torch.mean(ssim_(image_pred, image_gt, 3))