forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
97 lines (77 loc) · 3.81 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
from timeit import default_timer as timer
import argparse
import subprocess
import sys
import scipy.io.wavfile as wav
import numpy as np
from deepspeech.model import Model
# These constants control the beam search decoder
# Beam width used in the CTC decoder when building candidate transcriptions
BEAM_WIDTH = 500
# The alpha hyperparameter of the CTC decoder. Language Model weight
LM_WEIGHT = 1.75
# The beta hyperparameter of the CTC decoder. Word insertion weight (penalty)
WORD_COUNT_WEIGHT = 1.00
# Valid word insertion weight. This is used to lessen the word insertion penalty
# when the inserted word is part of the vocabulary
VALID_WORD_COUNT_WEIGHT = 1.00
# These constants are tied to the shape of the graph used (changing them changes
# the geometry of the first layer), so make sure you use the same constants that
# were used during training
# Number of MFCC features to use
N_FEATURES = 26
# Size of the context window used for producing timesteps in the input vector
N_CONTEXT = 9
def convert_samplerate(audio_path):
sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate 16000 - '.format(audio_path)
try:
p = subprocess.Popen(sox_cmd.split(),
stderr=subprocess.PIPE, stdout=subprocess.PIPE)
output, err = p.communicate()
if p.returncode:
raise RuntimeError('SoX returned non-zero status: {}'.format(err))
except OSError as e:
raise OSError('SoX not found, use 16kHz files or install it: ', e)
audio = np.fromstring(output, dtype=np.int16)
return 16000, audio
def main():
parser = argparse.ArgumentParser(description='Benchmarking tooling for DeepSpeech native_client.')
parser.add_argument('model', type=str,
help='Path to the model (protocol buffer binary file)')
parser.add_argument('alphabet', type=str,
help='Path to the configuration file specifying the alphabet used by the network')
parser.add_argument('lm', type=str, nargs='?',
help='Path to the language model binary file')
parser.add_argument('trie', type=str, nargs='?',
help='Path to the language model trie file created with native_client/generate_trie')
parser.add_argument('audio', type=str,
help='Path to the audio file to run (WAV format)')
args = parser.parse_args()
print('Loading model from file %s' % (args.model), file=sys.stderr)
model_load_start = timer()
ds = Model(args.model, N_FEATURES, N_CONTEXT, args.alphabet, BEAM_WIDTH)
model_load_end = timer() - model_load_start
print('Loaded model in %0.3fs.' % (model_load_end), file=sys.stderr)
if args.lm and args.trie:
print('Loading language model from files %s %s' % (args.lm, args.trie), file=sys.stderr)
lm_load_start = timer()
ds.enableDecoderWithLM(args.alphabet, args.lm, args.trie, LM_WEIGHT,
WORD_COUNT_WEIGHT, VALID_WORD_COUNT_WEIGHT)
lm_load_end = timer() - lm_load_start
print('Loaded language model in %0.3fs.' % (lm_load_end), file=sys.stderr)
fs, audio = wav.read(args.audio)
if fs != 16000:
if fs < 16000:
print('Warning: original sample rate (%d) is lower than 16kHz. Up-sampling might produce erratic speech recognition.' % (fs), file=sys.stderr)
fs, audio = convert_samplerate(args.audio)
audio_length = len(audio) * ( 1 / 16000)
print('Running inference.', file=sys.stderr)
inference_start = timer()
print(ds.stt(audio, fs))
inference_end = timer() - inference_start
print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr)
if __name__ == '__main__':
main()