forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SEG-NET Generative Ladder
141 lines (112 loc) · 3.99 KB
/
SEG-NET Generative Ladder
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
import keras
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Merge
from keras.models import Model
from keras import backend as K
from keras import objectives
from keras.datasets import mnist
from keras.layers.core import Reshape
from __future__ import print_function
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Highway
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D, UpSampling2D
from keras.utils import np_utils
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint,LearningRateScheduler
import os
from keras.optimizers import SGD
from sklearn.preprocessing import MinMaxScaler
from keras.regularizers import l1, activity_l1
img = cv2.imread('Seg-Net_Train.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
import matplotlib.pyplot as plt
plt.imshow(gray,cmap=plt.get_cmap('gray'))
scaler = MinMaxScaler(feature_range=(0, 1))
def norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
x_train0=cv2.resize(gray, (60,60), interpolation = cv2.INTER_AREA)
x_train01=norm(x_train0)
x_train=x_train01.reshape((1,60,60,1))
shape2=54
x_train20=cv2.resize(gray, (shape2,shape2), interpolation = cv2.INTER_AREA)
x_train21=norm(x_train20)
x_train2=x_train21.reshape((1,shape2,shape2,1))
plt.imshow(x_train.reshape((60,60)),cmap=plt.get_cmap('gray'))
shape=60
batch_size = 30
nb_classes = 10
img_rows, img_cols = shape, shape
nb_filters = 32
pool_size = (2, 2)
kernel_size = (3, 3)
input_shape=(shape,shape,1)
reg=0.001
learning_rate = 0.012
decay_rate = 5e-5
momentum = 0.9
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=True)
shape2
recog0 = Sequential()
recog0.add(Convolution2D(20, 4,4,
border_mode='valid',
input_shape=input_shape))
recog0.add(BatchNormalization(mode=2))
recog0.add(MaxPooling2D(pool_size=(2,2)))
recog=recog0
recog.add(Activation('relu'))
recog.add(MaxPooling2D(pool_size=(2,2)))
recog.add(UpSampling2D(size=(2, 2)))
recog.add(Convolution2D(20, 1, 1,init='glorot_uniform'))
recog.add(BatchNormalization(mode=2))
recog.add(Activation('relu'))
for i in range(0,8):
print(i,recog0.layers[i].name)
recog_res=recog0
part=8
recog0.layers[part].name
get_0_layer_output = K.function([recog0.layers[0].input, K.learning_phase()],[recog0.layers[part].output])
get_0_layer_output([x_train, 0])[0][0]
pred=[np.argmax(get_0_layer_output([x_train, 0])[0][i]) for i in range(0,len(x_train))]
loss=x_train-pred
loss=loss.astype('float32')
recog_res.add(Lambda(lambda x: x-np.mean(loss),input_shape=(28,28,20),output_shape=(28,28,20)))
recog2=Sequential()
recog2.add(Merge([recog,recog_res],mode='sum'))
recog2.add(UpSampling2D(size=(2, 2)))
recog2.add(Convolution2D(1, 3, 3,init='glorot_uniform'))
recog2.add(BatchNormalization(mode=2))
recog2.add(Reshape((shape2*shape2,)))
## SOFTMAX P/ RGB
recog2.add(Activation('relu'))
recog2.add(Reshape((shape2,shape2,1)))
recog2.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['mae'])
recog2.summary()
x_train3=x_train2.reshape((1,shape2,shape2,1))
recog2.fit(x_train,x_train3,
nb_epoch=400,
batch_size=30,verbose=1)
recog2.save_weights('Seg-Net_BEST_sum_400.hdf5')
filename = "Seg-Net_BEST_sum_400.hdf5"
recog2.load_weights(filename)
recog2.compile(loss='mean_squared_error', optimizer='adam')
a=norm(recog2.predict(x_train))
plt.figure(figsize=(10,10))
ax = plt.subplot(1, 3, 1)
plt.imshow(x_train.reshape((60,60)))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(1, 3, 2)
plt.imshow(a.reshape((shape2,shape2)))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(1, 3, 3)
plt.imshow(a.reshape((shape2,shape2)),cmap='hsv')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()