-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathactivation_study.py
178 lines (143 loc) · 7.19 KB
/
activation_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from __future__ import division
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import matplotlib as mpl
mpl.use('Agg')
from utility.utils import *
import models
if sys.version_info[0] < 3:
import cPickle as pickle
else:
import _pickle as pickle
from data_loader import *
from utility.plots import *
import numpy as np
import argparse
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Trains ResNeXt on CIFAR or SVHN',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'svhn', 'mnist'],
help='Choose between Cifar10/100 and SVHN.')
parser.add_argument('--data_dir', type=str, default='cifar10',
help='file where results are to be written')
parser.add_argument('--root_dir', type=str, default='experiments',
help='folder where results are to be stored')
parser.add_argument('--labels_per_class', type=int, default=5000, metavar='NL',
help='labels_per_class')
parser.add_argument('--valid_labels_per_class', type=int, default=0, metavar='NL',
help='validation labels_per_class')
parser.add_argument('--drop_block', type=int, default=7, help='block size of dropblock')
parser.add_argument('--arch', metavar='ARCH', default='preactresnet18', choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: preactresnet18)')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--job_id', type=str, default='')
parser.add_argument('--checkpoint', type=str, default='False', help='get checkpoint and save best model')
parser.add_argument('--methods', type=str, nargs='+', default=['cutout', 'cutmix', 'manifold', 'soft', 'hard'],
help='regularization methods')
parser.add_argument('--batch_size', type=int, default=100, help='Batch size.')
parser.add_argument('--dropout', action='store_true', default=False,
help='whether to use dropout or not in final layer')
args = parser.parse_args()
args.checkpoint = False if args.checkpoint == 'False' else True
out_str = str(args)
print(out_str)
def experiment_name(dataset='cifar10',
arch=''):
exp_name = dataset
exp_name += '_arch_' + str(arch)
print('experiement name: ' + exp_name)
return exp_name
def get_activation_sum(activation_lst):
sum_acts = []
for activation in activation_lst:
summation = [activation.features[0, i].sum().item() for i in range(activation.features.shape[1])]
sum_acts.append(summation)
return sum_acts
def get_activation_magnitude(val_loader, model):
model.to(device)
# First we should register each block in the forward hook while we are doing inference.
activations_1 = SaveFeatures(list(model.children())[1])
activations_3 = SaveFeatures(list(model.children())[3])
activations_5 = SaveFeatures(list(model.children())[5])
activations_7 = SaveFeatures(list(model.children())[7])
activation_lst = [activations_1, activations_3, activations_5, activations_7]
# initialize the sum of activation to zero
sum_act = np.array([np.zeros(shape=(16,)), np.zeros(shape=(160,)), np.zeros(shape=(320,)), np.zeros(shape=(640,))])
model.eval()
# iterate over mini-batches of the validation set.
for i, (input, target) in enumerate(val_loader):
input = input.to(device)
with torch.no_grad():
input_var = Variable(input)
model(input_var)
# after inference we have access to the activations of blocks since we registered them in the forward hook.
result = get_activation_sum(activation_lst)
sum_act = np.add(sum_act, result)
# average them for all samples
sum_act = sum_act / float(len(val_loader.dataset.targets))
return sum_act
best_acc = 0
class SaveFeatures():
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
self.features = output.clone().detach().requires_grad_(True).to(device)
def close(self):
self.hook.remove()
def main():
"""
This method is responsible to load a pre-trained regularized model for the ablation study of analysis of
regularization techniques Effect on activations (described in section 4.4 in manuscript of the paper and Appendix-E
It will save the result as a numpy array in a given path.
"""
exp_name = experiment_name(dataset=args.dataset, arch=args.arch)
exp_dir = os.path.join(args.root_dir, exp_name)
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
copy_script_to_folder(os.path.abspath(__file__), exp_dir)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
num_workers = 0
if device == torch.device("cuda"):
num_workers = 2
per_img_std = False
# load the datasets
train_loader, valid_loader, _, test_loader, num_classes = load_data_subset(1,
args.batch_size,
num_workers, args.dataset,
args.data_dir,
labels_per_class=args.labels_per_class,
valid_labels_per_class=args.valid_labels_per_class)
stride = 1
drop_block = args.drop_block
keep_prob = .7
gamma = .7
patchup_block = 7
for method in args.methods:
# following line are responsible to load the best pre-trained model for each regularize mode.
log_method = os.path.join(exp_dir, f'log_{method}.npy')
net = models.__dict__[args.arch](num_classes, args.dropout, per_img_std, stride, drop_block, keep_prob, gamma,
patchup_block).to(device)
resume = os.path.join(args.root_dir, f'{method}/model_best.pth.tar')
if resume:
if os.path.isfile(resume):
checkpoint = torch.load(resume, map_location=torch.device(device))
recorder = checkpoint['recorder']
args.start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
best_acc = recorder.max_accuracy(False)
# calculate the magnitudes of activations after each block in the pre-trained model.
magnitudes = get_activation_magnitude(test_loader, net)
# we save the average activations for validation samples as an numpy array.
np.save(log_method, magnitudes)
if __name__ == '__main__':
main()