forked from yangyuke001/FIIQA-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.py
140 lines (113 loc) · 4.58 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
'''Predict age in one shot.'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.downsample(x)
out = F.relu(out)
return out
def freeze_bn(self):
'''Freeze BatchNorm layers.'''
for layer in self.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.training = False
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.downsample(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# self.avg_pool = nn.AvgPool2d(kernel_size=7)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.max_pool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
def ResNet50():
return ResNet(Bottleneck, [3,4,6,3])
def ResNet101():
return ResNet(Bottleneck, [2,4,23,3])
class AGNet(nn.Module):
def __init__(self):
super(AGNet, self).__init__()
self.backbone = ResNet18()
self.age_head = self._make_head()
self.linear1 = nn.Linear(256,200)
def _make_head(self):
return nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
)
def forward(self, x):
N = x.size(0)
y = self.backbone(x)
y = F.avg_pool2d(y,5)
# Age head
y_age = self.age_head(y)
y_age = self.linear1(y_age.view(N,-1))
return y_age
def test():
net = AGNet()
age = net(Variable(torch.randn(2,3,150,150)))
print(age.size())
# test()