forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_transfer_cnn.py
124 lines (100 loc) · 3.73 KB
/
mnist_transfer_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
'''Transfer learning toy example:
1- Train a simple convnet on the MNIST dataset the first 5 digits [0..4].
2- Freeze convolutional layers and fine-tune dense layers
for the classification of digits [5..9].
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python mnist_transfer_cnn.py
Get to 99.8% test accuracy after 5 epochs
for the first five digits classifier
and 99.2% for the last five digits after transfer + fine-tuning.
'''
from __future__ import print_function
import numpy as np
import datetime
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
now = datetime.datetime.now
batch_size = 128
nb_classes = 5
nb_epoch = 5
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
def train_model(model, train, test, nb_classes):
X_train = train[0].reshape(train[0].shape[0], 1, img_rows, img_cols)
X_test = test[0].reshape(test[0].shape[0], 1, img_rows, img_cols)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(train[1], nb_classes)
Y_test = np_utils.to_categorical(test[1], nb_classes)
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
t = now()
model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test))
print('Training time: %s' % (now() - t))
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# create two datasets one with digits below 5 and one with 5 and above
X_train_lt5 = X_train[y_train < 5]
y_train_lt5 = y_train[y_train < 5]
X_test_lt5 = X_test[y_test < 5]
y_test_lt5 = y_test[y_test < 5]
X_train_gte5 = X_train[y_train >= 5]
y_train_gte5 = y_train[y_train >= 5] - 5 # make classes start at 0 for
X_test_gte5 = X_test[y_test >= 5] # np_utils.to_categorical
y_test_gte5 = y_test[y_test >= 5] - 5
# define two groups of layers: feature (convolutions) and classification (dense)
feature_layers = [
Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_cols)),
Activation('relu'),
Convolution2D(nb_filters, nb_conv, nb_conv),
Activation('relu'),
MaxPooling2D(pool_size=(nb_pool, nb_pool)),
Dropout(0.25),
Flatten(),
]
classification_layers = [
Dense(128),
Activation('relu'),
Dropout(0.5),
Dense(nb_classes),
Activation('softmax')
]
# create complete model
model = Sequential()
for l in feature_layers + classification_layers:
model.add(l)
# train model for 5-digit classification [0..4]
train_model(model,
(X_train_lt5, y_train_lt5),
(X_test_lt5, y_test_lt5), nb_classes)
# freeze feature layers and rebuild model
for l in feature_layers:
l.trainable = False
# transfer: train dense layers for new classification task [5..9]
train_model(model,
(X_train_gte5, y_train_gte5),
(X_test_gte5, y_test_gte5), nb_classes)