forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_irnn.py
70 lines (57 loc) · 2.29 KB
/
mnist_irnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
'''This is a reproduction of the IRNN experiment
with pixel-by-pixel sequential MNIST in
"A Simple Way to Initialize Recurrent Networks of Rectified Linear Units"
by Quoc V. Le, Navdeep Jaitly, Geoffrey E. Hinton
arXiv:1504.00941v2 [cs.NE] 7 Apr 201
http://arxiv.org/pdf/1504.00941v2.pdf
Optimizer is replaced with RMSprop which yields more stable and steady
improvement.
Reaches 0.93 train/test accuracy after 900 epochs
(which roughly corresponds to 1687500 steps in the original paper.)
'''
from __future__ import print_function
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.initializations import normal, identity
from keras.layers.recurrent import SimpleRNN
from keras.optimizers import RMSprop
from keras.utils import np_utils
batch_size = 32
nb_classes = 10
nb_epochs = 200
hidden_units = 100
learning_rate = 1e-6
clip_norm = 1.0
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], -1, 1)
X_test = X_test.reshape(X_test.shape[0], -1, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
print('Evaluate IRNN...')
model = Sequential()
model.add(SimpleRNN(output_dim=hidden_units,
init=lambda shape, name: normal(shape, scale=0.001, name=name),
inner_init=lambda shape, name: identity(shape, scale=1.0, name=name),
activation='relu',
input_shape=X_train.shape[1:]))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
rmsprop = RMSprop(lr=learning_rate)
model.compile(loss='categorical_crossentropy',
optimizer=rmsprop,
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epochs,
verbose=1, validation_data=(X_test, Y_test))
scores = model.evaluate(X_test, Y_test, verbose=0)
print('IRNN test score:', scores[0])
print('IRNN test accuracy:', scores[1])