forked from NVlabs/EmerNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
130 lines (113 loc) · 4.34 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import numpy as np
from datasets.waymo_preprocess import WaymoProcessor
if __name__ == "__main__":
"""
Waymo Dataset preprocessing script
===========================
This script facilitates the preprocessing of the Waymo dataset
Usage:
------
python preprocess.py \
--data_root <path_to_waymo_data> \
--target_dir <output_directory> \
[additional_arguments]
Example:
--------
python preprocess.py --data_root data/waymo/raw/ --target_dir data/waymo/processed --split training --workers 3 --scene_ids 700 754 114
Arguments:
----------
--data_root (str):
The root directory where the Waymo dataset is stored. This is a required argument.
--split (str):
Specifies the name of the data split. Default is set to "training".
--target_dir (str):
Designates the directory where the processed data will be saved. This is a mandatory argument.
--workers (int):
The number of processing threads. Default is set to 4.
--scene_ids (list[int]):
List of specific scene IDs for processing. Should be integers separated by spaces.
--split_file (str):
If provided, indicates the path to a file located in `data/waymo_splits` that contains the desired scene IDs.
--start_idx (int):
Used in conjunction with `num_scenes` to generate a list of scene IDs when neither `scene_ids` nor `split_file` are provided.
--num_scenes (int):
The total number of scenes to be processed.
--process_keys (list[str]):
Denotes the types of data components to be processed. Options include but aren't limited to "images", "lidar", "calib", "pose", etc.
Notes:
------
The logic of the script ensures that if specific scene IDs (`scene_ids`) are provided, they are prioritized.
If a split file (`split_file`) is indicated, it is utilized next.
If neither is available, the script uses the `start_idx` and `num_scenes` parameters to determine the scene IDs.
"""
parser = argparse.ArgumentParser(description="Data converter arg parser")
parser.add_argument(
"--data_root", type=str, required=True, help="root path of waymo dataset"
)
parser.add_argument("--split", type=str, default="training", help="split name")
parser.add_argument(
"--target_dir",
type=str,
required=True,
help="output directory of processed data",
)
parser.add_argument(
"--workers", type=int, default=4, help="number of threads to be used"
)
# priority: scene_ids > split_file > start_idx + num_scenes
parser.add_argument(
"--scene_ids",
default=None,
type=int,
nargs="+",
help="scene ids to be processed, a list of integers separated by space. Range: [0, 798] for training, [0, 202] for validation",
)
parser.add_argument(
"--split_file", type=str, default=None, help="Split file in data/waymo_splits"
)
parser.add_argument(
"--start_idx",
type=int,
default=0,
help="If no scene id or split_file is given, use start_idx and num_scenes to generate scene_ids_list",
)
parser.add_argument(
"--num_scenes",
type=int,
default=200,
help="number of scenes to be processed",
)
parser.add_argument(
"--process_keys",
nargs="+",
default=[
"images",
"lidar",
"calib",
"pose",
"dynamic_masks",
],
)
args = parser.parse_args()
if args.scene_ids is not None:
scene_ids_list = args.scene_ids
elif args.split_file is not None:
# parse the split file
split_file = open(args.split_file, "r").readlines()[1:]
scene_ids_list = [int(line.strip().split(",")[0]) for line in split_file]
else:
scene_ids_list = np.arange(args.start_idx, args.start_idx + args.num_scenes)
waymo_processor = WaymoProcessor(
load_dir=args.data_root,
save_dir=args.target_dir,
prefix=args.split,
process_keys=args.process_keys,
process_id_list=scene_ids_list,
workers=args.workers,
)
if args.scene_ids is not None and args.workers == 1:
for scene_id in args.scene_ids:
waymo_processor.convert_one(scene_id)
else:
waymo_processor.convert()