forked from flutter/engine
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_concurrent_jobs.py
executable file
·127 lines (105 loc) · 3.98 KB
/
get_concurrent_jobs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
# Copyright 2019 The Fuchsia Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# This script computes the number of concurrent jobs that can run in the
# build as a function of the machine. It accepts a set of key value pairs
# given by repeated --memory-per-job arguments. For example:
#
# $ get_concurrent_jobs.py --memory-per-job dart=1GB
#
# The result is a json map printed to stdout that gives the number of
# concurrent jobs allowed of each kind. For example:
#
# {"dart": 8}
#
# Some memory can be held out of the calculation with the --reserve-memory flag.
import argparse
import ctypes
import json
import multiprocessing
import os
import re
import subprocess
import sys
UNITS = {'B': 1, 'KB': 2**10, 'MB': 2**20, 'GB': 2**30, 'TB': 2**40}
# See https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-globalmemorystatusex
# and https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-memorystatusex
class MEMORYSTATUSEX(ctypes.Structure):
_fields_ = [
("dwLength", ctypes.c_ulong),
("dwMemoryLoad", ctypes.c_ulong),
("ullTotalPhys", ctypes.c_ulonglong),
("ullAvailPhys", ctypes.c_ulonglong),
("ullTotalPageFile", ctypes.c_ulonglong),
("ullAvailPageFile", ctypes.c_ulonglong),
("ullTotalVirtual", ctypes.c_ulonglong),
("ullAvailVirtual", ctypes.c_ulonglong),
("sullAvailExtendedVirtual", ctypes.c_ulonglong),
]
def GetTotalMemory():
if sys.platform in ('win32', 'cygwin'):
stat = MEMORYSTATUSEX(dwLength=ctypes.sizeof(MEMORYSTATUSEX))
success = ctypes.windll.kernel32.GlobalMemoryStatusEx(ctypes.byref(stat))
return stat.ullTotalPhys if success else 0
elif sys.platform.startswith('linux'):
if os.path.exists("/proc/meminfo"):
with open("/proc/meminfo") as meminfo:
memtotal_re = re.compile(r'^MemTotal:\s*(\d*)\s*kB')
for line in meminfo:
match = memtotal_re.match(line)
if match:
return float(match.group(1)) * 2**10
elif sys.platform == 'darwin':
try:
return int(subprocess.check_output(['sysctl', '-n', 'hw.memsize']))
except Exception:
return 0
else:
return 0
def ParseSize(string):
i = next(i for (i, c) in enumerate(string) if not c.isdigit())
number = string[:i].strip()
unit = string[i:].strip()
return int(float(number) * UNITS[unit])
class ParseSizeAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
sizes = getattr(args, self.dest, [])
for value in values:
(k, v) = value.split('=', 1)
sizes.append((k, ParseSize(v)))
setattr(args, self.dest, sizes)
def Main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--memory-per-job',
action=ParseSizeAction,
default=[],
nargs='*',
help='Key value pairings (dart=1GB) giving an estimate of the amount of '
'memory needed for the class of job.')
parser.add_argument(
'--reserve-memory',
type=ParseSize,
default=0,
help='The amount of memory to be held out of the amount for jobs to use.')
args = parser.parse_args()
total_memory = GetTotalMemory()
# Ensure the total memory used in the calculation below is at least 0
mem_total_bytes = max(0, total_memory - args.reserve_memory)
# Ensure the number of cpus used in the calculation below is at least 1
try:
cpu_cap = multiprocessing.cpu_count()
except:
cpu_cap = 1
concurrent_jobs = {}
for job, memory_per_job in args.memory_per_job:
# Calculate the number of jobs that will fit in memory. Ensure the
# value is at least 1.
num_concurrent_jobs = int(max(1, mem_total_bytes / memory_per_job))
# Cap the number of jobs by the number of cpus available.
concurrent_jobs[job] = min(num_concurrent_jobs, cpu_cap)
print(json.dumps(concurrent_jobs))
return 0
if __name__ == '__main__':
sys.exit(Main())