forked from leela-zero/leela-zero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTuner.h
81 lines (63 loc) · 2.97 KB
/
Tuner.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*
This file is part of Leela Zero.
Copyright (C) 2017-2019 Gian-Carlo Pascutto and contributors
Leela Zero is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Leela Zero is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Leela Zero. If not, see <http://www.gnu.org/licenses/>.
Additional permission under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with NVIDIA Corporation's libraries from the
NVIDIA CUDA Toolkit and/or the NVIDIA CUDA Deep Neural
Network library and/or the NVIDIA TensorRT inference library
(or a modified version of those libraries), containing parts covered
by the terms of the respective license agreement, the licensors of
this Program grant you additional permission to convey the resulting
work.
*/
#ifndef SGEMM_TUNER_H_INCLUDED
#define SGEMM_TUNER_H_INCLUDED
#include "config.h"
#include <map>
#include <string>
#include <vector>
using Configurations = std::pair<std::string, std::vector<size_t>>;
using Parameters = std::map<std::string, size_t>;
template <typename net_t> class OpenCL;
template <typename net_t>
class Tuner {
OpenCL<net_t>& m_opencl;
cl::Context m_context;
cl::Device m_device;
bool m_use_tensorcore = false;
public:
std::string tune_sgemm(int m, int n, int k, int batch_size, int runs = 4);
std::string load_sgemm_tuners(int m, int n, int k, int batch_size);
// list of device types that was tuned in this run.
// This is to prevent the same device from being tuned multiple times.
static std::vector<std::string> tuned_devices;
// version 0 : Initial release
// version 1 : Tuner with additional tensor cores (parameter TCE)
static constexpr auto TUNER_VERSION = 1;
Tuner(OpenCL<net_t>& opencl, cl::Context context, cl::Device device)
: m_opencl(opencl), m_context(context), m_device(device) {}
void enable_tensorcore();
private:
void store_sgemm_tuners(int m, int n, int k, int batch_size,
std::string tuners);
bool valid_config_sgemm(Parameters p, bool exhaustive);
std::string parameters_to_defines(const Parameters& p);
std::string parameters_to_string(const Parameters& p);
Parameters get_parameters_by_int(const std::vector<Configurations>& opts,
int n);
std::string sgemm_tuners_from_line(std::string line, int m, int n, int k,
int batch_size);
std::vector<Parameters> build_valid_params();
};
#endif