forked from d3/d3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathline.js
439 lines (389 loc) · 11.9 KB
/
line.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import "../arrays/map";
import "../core/functor";
import "../core/identity";
import "../core/true";
import "svg";
function d3_svg_line(projection) {
var x = d3_svg_lineX,
y = d3_svg_lineY,
defined = d3_true,
interpolate = d3_svg_lineLinear,
interpolateKey = interpolate.key,
tension = .7;
function line(data) {
var segments = [],
points = [],
i = -1,
n = data.length,
d,
fx = d3_functor(x),
fy = d3_functor(y);
function segment() {
segments.push("M", interpolate(projection(points), tension));
}
while (++i < n) {
if (defined.call(this, d = data[i], i)) {
points.push([+fx.call(this, d, i), +fy.call(this, d, i)]);
} else if (points.length) {
segment();
points = [];
}
}
if (points.length) segment();
return segments.length ? segments.join("") : null;
}
line.x = function(_) {
if (!arguments.length) return x;
x = _;
return line;
};
line.y = function(_) {
if (!arguments.length) return y;
y = _;
return line;
};
line.defined = function(_) {
if (!arguments.length) return defined;
defined = _;
return line;
};
line.interpolate = function(_) {
if (!arguments.length) return interpolateKey;
if (typeof _ === "function") interpolateKey = interpolate = _;
else interpolateKey = (interpolate = d3_svg_lineInterpolators.get(_) || d3_svg_lineLinear).key;
return line;
};
line.tension = function(_) {
if (!arguments.length) return tension;
tension = _;
return line;
};
return line;
}
d3.svg.line = function() {
return d3_svg_line(d3_identity);
};
// The default `x` property, which references d[0].
function d3_svg_lineX(d) {
return d[0];
}
// The default `y` property, which references d[1].
function d3_svg_lineY(d) {
return d[1];
}
// The various interpolators supported by the `line` class.
var d3_svg_lineInterpolators = d3.map({
"linear": d3_svg_lineLinear,
"linear-closed": d3_svg_lineLinearClosed,
"step": d3_svg_lineStep,
"step-before": d3_svg_lineStepBefore,
"step-after": d3_svg_lineStepAfter,
"basis": d3_svg_lineBasis,
"basis-open": d3_svg_lineBasisOpen,
"basis-closed": d3_svg_lineBasisClosed,
"bundle": d3_svg_lineBundle,
"cardinal": d3_svg_lineCardinal,
"cardinal-open": d3_svg_lineCardinalOpen,
"cardinal-closed": d3_svg_lineCardinalClosed,
"monotone": d3_svg_lineMonotone
});
d3_svg_lineInterpolators.forEach(function(key, value) {
value.key = key;
value.closed = /-closed$/.test(key);
});
// Linear interpolation; generates "L" commands.
function d3_svg_lineLinear(points) {
return points.join("L");
}
function d3_svg_lineLinearClosed(points) {
return d3_svg_lineLinear(points) + "Z";
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStep(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("H", (p[0] + (p = points[i])[0]) / 2, "V", p[1]);
if (n > 1) path.push("H", p[0]);
return path.join("");
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepBefore(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("V", (p = points[i])[1], "H", p[0]);
return path.join("");
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepAfter(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("H", (p = points[i])[0], "V", p[1]);
return path.join("");
}
// Open cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalOpen(points, tension) {
return points.length < 4
? d3_svg_lineLinear(points)
: points[1] + d3_svg_lineHermite(points.slice(1, points.length - 1),
d3_svg_lineCardinalTangents(points, tension));
}
// Closed cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalClosed(points, tension) {
return points.length < 3
? d3_svg_lineLinear(points)
: points[0] + d3_svg_lineHermite((points.push(points[0]), points),
d3_svg_lineCardinalTangents([points[points.length - 2]]
.concat(points, [points[1]]), tension));
}
// Cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinal(points, tension) {
return points.length < 3
? d3_svg_lineLinear(points)
: points[0] + d3_svg_lineHermite(points,
d3_svg_lineCardinalTangents(points, tension));
}
// Hermite spline construction; generates "C" commands.
function d3_svg_lineHermite(points, tangents) {
if (tangents.length < 1
|| (points.length != tangents.length
&& points.length != tangents.length + 2)) {
return d3_svg_lineLinear(points);
}
var quad = points.length != tangents.length,
path = "",
p0 = points[0],
p = points[1],
t0 = tangents[0],
t = t0,
pi = 1;
if (quad) {
path += "Q" + (p[0] - t0[0] * 2 / 3) + "," + (p[1] - t0[1] * 2 / 3)
+ "," + p[0] + "," + p[1];
p0 = points[1];
pi = 2;
}
if (tangents.length > 1) {
t = tangents[1];
p = points[pi];
pi++;
path += "C" + (p0[0] + t0[0]) + "," + (p0[1] + t0[1])
+ "," + (p[0] - t[0]) + "," + (p[1] - t[1])
+ "," + p[0] + "," + p[1];
for (var i = 2; i < tangents.length; i++, pi++) {
p = points[pi];
t = tangents[i];
path += "S" + (p[0] - t[0]) + "," + (p[1] - t[1])
+ "," + p[0] + "," + p[1];
}
}
if (quad) {
var lp = points[pi];
path += "Q" + (p[0] + t[0] * 2 / 3) + "," + (p[1] + t[1] * 2 / 3)
+ "," + lp[0] + "," + lp[1];
}
return path;
}
// Generates tangents for a cardinal spline.
function d3_svg_lineCardinalTangents(points, tension) {
var tangents = [],
a = (1 - tension) / 2,
p0,
p1 = points[0],
p2 = points[1],
i = 1,
n = points.length;
while (++i < n) {
p0 = p1;
p1 = p2;
p2 = points[i];
tangents.push([a * (p2[0] - p0[0]), a * (p2[1] - p0[1])]);
}
return tangents;
}
// B-spline interpolation; generates "C" commands.
function d3_svg_lineBasis(points) {
if (points.length < 3) return d3_svg_lineLinear(points);
var i = 1,
n = points.length,
pi = points[0],
x0 = pi[0],
y0 = pi[1],
px = [x0, x0, x0, (pi = points[1])[0]],
py = [y0, y0, y0, pi[1]],
path = [x0, ",", y0, "L", d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)];
points.push(points[n - 1]);
while (++i <= n) {
pi = points[i];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
points.pop();
path.push("L", pi);
return path.join("");
}
// Open B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisOpen(points) {
if (points.length < 4) return d3_svg_lineLinear(points);
var path = [],
i = -1,
n = points.length,
pi,
px = [0],
py = [0];
while (++i < 3) {
pi = points[i];
px.push(pi[0]);
py.push(pi[1]);
}
path.push(d3_svg_lineDot4(d3_svg_lineBasisBezier3, px)
+ "," + d3_svg_lineDot4(d3_svg_lineBasisBezier3, py));
--i; while (++i < n) {
pi = points[i];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
return path.join("");
}
// Closed B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisClosed(points) {
var path,
i = -1,
n = points.length,
m = n + 4,
pi,
px = [],
py = [];
while (++i < 4) {
pi = points[i % n];
px.push(pi[0]);
py.push(pi[1]);
}
path = [
d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",",
d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)
];
--i; while (++i < m) {
pi = points[i % n];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
return path.join("");
}
function d3_svg_lineBundle(points, tension) {
var n = points.length - 1;
if (n) {
var x0 = points[0][0],
y0 = points[0][1],
dx = points[n][0] - x0,
dy = points[n][1] - y0,
i = -1,
p,
t;
while (++i <= n) {
p = points[i];
t = i / n;
p[0] = tension * p[0] + (1 - tension) * (x0 + t * dx);
p[1] = tension * p[1] + (1 - tension) * (y0 + t * dy);
}
}
return d3_svg_lineBasis(points);
}
// Returns the dot product of the given four-element vectors.
function d3_svg_lineDot4(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
// Matrix to transform basis (b-spline) control points to bezier
// control points. Derived from FvD 11.2.8.
var d3_svg_lineBasisBezier1 = [0, 2/3, 1/3, 0],
d3_svg_lineBasisBezier2 = [0, 1/3, 2/3, 0],
d3_svg_lineBasisBezier3 = [0, 1/6, 2/3, 1/6];
// Pushes a "C" Bézier curve onto the specified path array, given the
// two specified four-element arrays which define the control points.
function d3_svg_lineBasisBezier(path, x, y) {
path.push(
"C", d3_svg_lineDot4(d3_svg_lineBasisBezier1, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier1, y),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, y),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, y));
}
// Computes the slope from points p0 to p1.
function d3_svg_lineSlope(p0, p1) {
return (p1[1] - p0[1]) / (p1[0] - p0[0]);
}
// Compute three-point differences for the given points.
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline#Finite_difference
function d3_svg_lineFiniteDifferences(points) {
var i = 0,
j = points.length - 1,
m = [],
p0 = points[0],
p1 = points[1],
d = m[0] = d3_svg_lineSlope(p0, p1);
while (++i < j) {
m[i] = (d + (d = d3_svg_lineSlope(p0 = p1, p1 = points[i + 1]))) / 2;
}
m[i] = d;
return m;
}
// Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite
// interpolation. Returns an array of tangent vectors. For details, see
// http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
function d3_svg_lineMonotoneTangents(points) {
var tangents = [],
d,
a,
b,
s,
m = d3_svg_lineFiniteDifferences(points),
i = -1,
j = points.length - 1;
// The first two steps are done by computing finite-differences:
// 1. Compute the slopes of the secant lines between successive points.
// 2. Initialize the tangents at every point as the average of the secants.
// Then, for each segment…
while (++i < j) {
d = d3_svg_lineSlope(points[i], points[i + 1]);
// 3. If two successive yk = y{k + 1} are equal (i.e., d is zero), then set
// mk = m{k + 1} = 0 as the spline connecting these points must be flat to
// preserve monotonicity. Ignore step 4 and 5 for those k.
if (Math.abs(d) < 1e-6) {
m[i] = m[i + 1] = 0;
} else {
// 4. Let ak = mk / dk and bk = m{k + 1} / dk.
a = m[i] / d;
b = m[i + 1] / d;
// 5. Prevent overshoot and ensure monotonicity by restricting the
// magnitude of vector <ak, bk> to a circle of radius 3.
s = a * a + b * b;
if (s > 9) {
s = d * 3 / Math.sqrt(s);
m[i] = s * a;
m[i + 1] = s * b;
}
}
}
// Compute the normalized tangent vector from the slopes. Note that if x is
// not monotonic, it's possible that the slope will be infinite, so we protect
// against NaN by setting the coordinate to zero.
i = -1; while (++i <= j) {
s = (points[Math.min(j, i + 1)][0] - points[Math.max(0, i - 1)][0]) / (6 * (1 + m[i] * m[i]));
tangents.push([s || 0, m[i] * s || 0]);
}
return tangents;
}
function d3_svg_lineMonotone(points) {
return points.length < 3
? d3_svg_lineLinear(points)
: points[0] + d3_svg_lineHermite(points, d3_svg_lineMonotoneTangents(points));
}