forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral.py
executable file
·468 lines (406 loc) · 20.6 KB
/
spectral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# MIT License
# Copyright (c) 2017 Brandon Tran and Jerry Li
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
'''
Spectral Signatures in Backdoor Attacks
This file is modified based on the following source:
link : https://github.com/MadryLab/backdoor_data_poisoning.
The defense method is called spectral.
@article{tran2018spectral,
title={Spectral signatures in backdoor attacks},
author={Tran, Brandon and Li, Jerry and Madry, Aleksander},
journal={Advances in neural information processing systems},
volume={31},
year={2018}}
The update include:
1. data preprocess and dataset setting
2. model setting
3. args and config
4. save process
5. new standard: robust accuracy
6. use the PyTorch environment instead of TensorFlow
7. add some addtional backbone such as resnet18 and vgg19
8. the poison ratio can also be preset when the data for each category is small
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. spectral defense:
a. prepare the model and dataset
b. get the activation as representation for each data
c. detect the backdoor data by the SVD decomposition
d. retrain the model with remaining data
4. test the result and get ASR, ACC, RC
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
sys.path.append('../')
sys.path.append(os.getcwd())
from pprint import pformat
import yaml
import logging
import time
from defense.base import defense
from utils.aggregate_block.train_settings_generate import argparser_criterion, argparser_opt_scheduler
from utils.trainer_cls import PureCleanModelTrainer
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform
from utils.save_load_attack import load_attack_result, save_defense_result
class spectral(defense):
r"""Spectral Signatures in Backdoor Attacks
basic structure:
1. config args, save_path, fix random seed
2. load the backdoor attack data and backdoor test data
3. load the backdoor model
4. spectral defense:
a. prepare the model and dataset
b. get the activation as representation for each data
c. detect the backdoor data by the SVD decomposition
d. retrain the model with remaining data
5. test the result and get ASR, ACC, RC
.. code-block:: python
parser = argparse.ArgumentParser(description=sys.argv[0])
spectral.add_arguments(parser)
args = parser.parse_args()
spectral_method = spectral(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = spectral_method.defense(args.result_file)
.. Note::
@article{tran2018spectral,
title={Spectral signatures in backdoor attacks},
author={Tran, Brandon and Li, Jerry and Madry, Aleksander},
journal={Advances in neural information processing systems},
volume={31},
year={2018}
}
Args:
baisc args: in the base class
percentile: the percentile of the singular value
target_label: the target label of the backdoor data(the default is None, which means all the labels are possible target labels)
"""
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', default = False, type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/defense/spectral/config.yaml", help='the path of yaml')
#set the parameter for the spectral defense
parser.add_argument('--percentile', type=float)
parser.add_argument('--target_label', type=int)
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/defense/spectral/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
# assert(os.path.exists(save_path))
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'checkpoint/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
# self.device = torch.device(
# (
# f"cuda:{[int(i) for i in self.args.device[5:].split(',')][0]}" if "," in self.args.device else self.args.device
# # since DataParallel only allow .to("cuda")
# ) if torch.cuda.is_available() else "cpu"
# )
self.device = self.args.device
def mitigation(self):
self.set_devices()
fix_random(self.args.random_seed)
### a. prepare the model and dataset
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
# Setting up the data and the model
train_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = True)
train_dataset = self.result['bd_train'].wrapped_dataset
data_set_without_tran = train_dataset
data_set_o = self.result['bd_train']
data_set_o.wrapped_dataset = data_set_without_tran
data_set_o.wrap_img_transform = train_tran
data_set_o.wrapped_dataset.getitem_all = False
dataset = data_set_o
# initialize data augmentation
logging.info(f'Dataset Size: {len(dataset)}' )
if 'target_label' in args.__dict__:
if isinstance(self.args.target_label,(int)):
poison_labels = [self.args.target_label]
else:
poison_labels = self.args.target_label
else:
poison_labels = range(self.args.num_classes)
re_all = []
for target_label in poison_labels:
lbl = target_label
dataset_y = []
for i in range(len(dataset)):
dataset_y.append(dataset[i][1])
cur_indices = [i for i,v in enumerate(dataset_y) if v==lbl]
cur_examples = len(cur_indices)
logging.info(f'Label, num ex: {lbl},{cur_examples}' )
model.eval()
### b. get the activation as representation for each data
for iex in range(cur_examples):
cur_im = cur_indices[iex]
x_batch = dataset[cur_im][0].unsqueeze(0).to(self.args.device)
y_batch = dataset[cur_im][1]
with torch.no_grad():
assert self.args.model in ['preactresnet18', 'vgg19','vgg19_bn', 'resnet18', 'mobilenet_v3_large', 'densenet161', 'efficientnet_b3','convnext_tiny','vit_b_16']
if self.args.model == 'preactresnet18':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.layer4.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'vgg19':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'vgg19_bn':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'resnet18':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.layer4.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'mobilenet_v3_large':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'densenet161':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
outs[0] = torch.nn.functional.relu(outs[0])
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'efficientnet_b3':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'convnext_tiny':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = outs[0].view(outs[0].size(0), -1).squeeze(0)
hook.remove()
elif self.args.model == 'vit_b_16':
inps,outs = [],[]
def layer_hook(module, inp, out):
inps.append(inp[0].data)
hook = model[1].heads.register_forward_hook(layer_hook)
_ = model(x_batch)
batch_grads = inps[0].view(inps[0].size(0), -1).squeeze(0)
hook.remove()
if iex==0:
full_cov = np.zeros(shape=(cur_examples, len(batch_grads)))
full_cov[iex] = batch_grads.detach().cpu().numpy()
### c. detect the backdoor data by the SVD decomposition
total_p = self.args.percentile
full_mean = np.mean(full_cov, axis=0, keepdims=True)
centered_cov = full_cov - full_mean
u,s,v = np.linalg.svd(centered_cov, full_matrices=False)
logging.info(f'Top 7 Singular Values: {s[0:7]}')
eigs = v[0:1]
p = total_p
corrs = np.matmul(eigs, np.transpose(full_cov)) #shape num_top, num_active_indices
scores = np.linalg.norm(corrs, axis=0) #shape num_active_indices
logging.info(f'Length Scores: {len(scores)}' )
p_score = np.percentile(scores, p)
top_scores = np.where(scores>p_score)[0]
logging.info(f'{top_scores}')
removed_inds = np.copy(top_scores)
re = [cur_indices[v] for i,v in enumerate(removed_inds)]
re_all.extend(re)
left_inds = np.delete(range(len(dataset)), re_all)
### d. retrain the model with remaining data
model = generate_cls_model(self.args.model,self.args.num_classes)
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
dataset.subset(left_inds)
dataset.wrapped_dataset.getitem_all = True
# dataset.subset(left_inds)
dataset_left = dataset
data_loader_sie = torch.utils.data.DataLoader(dataset_left, batch_size=self.args.batch_size, num_workers=self.args.num_workers, shuffle=True)
optimizer, scheduler = argparser_opt_scheduler(model, self.args)
# criterion = nn.CrossEntropyLoss()
self.set_trainer(model)
criterion = argparser_criterion(args)
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
data_bd_testset = self.result['bd_test']
data_bd_testset.wrap_img_transform = test_tran
data_bd_loader = torch.utils.data.DataLoader(data_bd_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
data_clean_testset = self.result['clean_test']
data_clean_testset.wrap_img_transform = test_tran
data_clean_loader = torch.utils.data.DataLoader(data_clean_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
self.trainer.train_with_test_each_epoch_on_mix(
data_loader_sie,
data_clean_loader,
data_bd_loader,
args.epochs,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=self.args.device,
frequency_save=args.frequency_save,
save_folder_path=args.save_path,
save_prefix='spectral',
amp=args.amp,
prefetch=args.prefetch,
prefetch_transform_attr_name="ori_image_transform_in_loading", # since we use the preprocess_bd_dataset
non_blocking=args.non_blocking,
)
result = {}
result["dataset"] = dataset_left
result['model'] = model
save_defense_result(
model_name=args.model,
num_classes=args.num_classes,
model=model.cpu().state_dict(),
save_path=args.save_path,
)
return result
def defense(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.mitigation()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
spectral.add_arguments(parser)
args = parser.parse_args()
spectral_method = spectral(args)
if "result_file" not in args.__dict__:
args.result_file = 'defense_test_badnet'
elif args.result_file is None:
args.result_file = 'defense_test_badnet'
result = spectral_method.defense(args.result_file)