Skip to content

Latest commit

 

History

History
 
 

1514.Path with Maximum Probability

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给你一个由 n 个节点(下标从 0 开始)组成的无向加权图,该图由一个描述边的列表组成,其中 edges[i] = [a, b] 表示连接节点 a 和 b 的一条无向边,且该边遍历成功的概率为 succProb[i]

指定两个节点分别作为起点 start 和终点 end ,请你找出从起点到终点成功概率最大的路径,并返回其成功概率。

如果不存在从 startend 的路径,请 返回 0 。只要答案与标准答案的误差不超过 1e-5 ,就会被视作正确答案。

 

示例 1:

输入:n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
输出:0.25000
解释:从起点到终点有两条路径,其中一条的成功概率为 0.2 ,而另一条为 0.5 * 0.5 = 0.25

示例 2:

输入:n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
输出:0.30000

示例 3:

输入:n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
输出:0.00000
解释:节点 0 和 节点 2 之间不存在路径

 

提示:

  • 2 <= n <= 10^4
  • 0 <= start, end < n
  • start != end
  • 0 <= a, b < n
  • a != b
  • 0 <= succProb.length == edges.length <= 2*10^4
  • 0 <= succProb[i] <= 1
  • 每两个节点之间最多有一条边

解法

方法一:堆优化 Dijkstra 算法

时间复杂度 O(mlogn)。

方法二:SPFA 算法

时间复杂度,平均情况下 O(m),最坏情况下 O(nm),n 表示点数,m 表示边数。

Python3

class Solution:
    def maxProbability(
        self,
        n: int,
        edges: List[List[int]],
        succProb: List[float],
        start: int,
        end: int,
    ) -> float:
        g = defaultdict(list)
        for (a, b), s in zip(edges, succProb):
            g[a].append((b, s))
            g[b].append((a, s))
        q = [(-1, start)]
        d = [0] * n
        d[start] = 1
        while q:
            w, u = heappop(q)
            w = -w
            if d[u] > w:
                continue
            for v, t in g[u]:
                if d[v] < d[u] * t:
                    d[v] = d[u] * t
                    heappush(q, (-d[v], v))
        return d[end]
class Solution:
    def maxProbability(self, n: int, edges: List[List[int]], succProb: List[float], start: int, end: int) -> float:
        g = defaultdict(list)
        for (a, b), s in zip(edges, succProb):
            g[a].append((b, s))
            g[b].append((a, s))
        d = [0] * n
        vis = [False] * n
        d[start] = 1
        q = deque([start])
        vis[start] = True
        while q:
            i = q.popleft()
            vis[i] = False
            for j, s in g[i]:
                if d[j] < d[i] * s:
                    d[j] = d[i] * s
                    if not vis[j]:
                        q.append(j)
                        vis[j] = True
        return d[end]

Java

class Solution {
    public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
        List<Pair<Integer, Double>>[] g = new List[n];
        for (int i = 0; i < n; ++i) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < edges.length; ++i) {
            int a = edges[i][0], b = edges[i][1];
            double s = succProb[i];
            g[a].add(new Pair<>(b, s));
            g[b].add(new Pair<>(a, s));
        }
        PriorityQueue<Pair<Double, Integer>> q = new PriorityQueue<>(Comparator.comparingDouble(Pair::getKey));
        double[] d = new double[n];
        d[start] = 1.0;
        q.offer(new Pair<>(-1.0, start));
        while (!q.isEmpty()) {
            Pair<Double, Integer> p = q.poll();
            double w = p.getKey();
            w *= -1;
            int u = p.getValue();
            for (Pair<Integer, Double> ne : g[u]) {
                int v = ne.getKey();
                double t = ne.getValue();
                if (d[v] < d[u] * t) {
                    d[v] = d[u] * t;
                    q.offer(new Pair<>(-d[v], v));
                }
            }
        }
        return d[end];
    }
}
class Solution {
    public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
        List<Pair<Integer, Double>>[] g = new List[n];
        for (int i = 0; i < n; ++i) {
            g[i] = new ArrayList<>();
        }
        for (int i = 0; i < edges.length; ++i) {
            int a = edges[i][0], b = edges[i][1];
            double s = succProb[i];
            g[a].add(new Pair<>(b, s));
            g[b].add(new Pair<>(a, s));
        }
        double[] d = new double[n];
        d[start] = 1.0;
        boolean[] vis = new boolean[n];
        Deque<Integer> q = new ArrayDeque<>();
        q.offer(start);
        vis[start] = true;
        while (!q.isEmpty()) {
            int i = q.poll();
            vis[i] = false;
            for (Pair<Integer, Double> ne : g[i]) {
                int j = ne.getKey();
                double s = ne.getValue();
                if (d[j] < d[i] * s) {
                    d[j] = d[i] * s;
                    if (!vis[j]) {
                        q.offer(j);
                        vis[j] = true;
                    }
                }
            }
        }
        return d[end];
    }
}

C++

class Solution {
public:
    double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
        vector<vector<pair<int, double>>> g(n);
        for (int i = 0; i < edges.size(); ++i) {
            int a = edges[i][0], b = edges[i][1];
            double s = succProb[i];
            g[a].push_back({b, s});
            g[b].push_back({a, s});
        }
        vector<double> d(n);
        d[start] = 1.0;
        queue<pair<double, int>> q;
        q.push({1.0, start});
        while (!q.empty()) {
            auto p = q.front();
            q.pop();
            double w = p.first;
            int u = p.second;
            if (d[u] > w) continue;
            for (auto& e : g[u]) {
                int v = e.first;
                double t = e.second;
                if (d[v] < d[u] * t) {
                    d[v] = d[u] * t;
                    q.push({d[v], v});
                }
            }
        }
        return d[end];
    }
};
class Solution {
public:
    double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
        vector<vector<pair<int, double>>> g(n);
        for (int i = 0; i < edges.size(); ++i)
        {
            int a = edges[i][0], b = edges[i][1];
            double s = succProb[i];
            g[a].push_back({b, s});
            g[b].push_back({a, s});
        }
        vector<double> d(n);
        vector<bool> vis(n);
        d[start] = 1.0;
        queue<int> q{{start}};
        vis[start] = true;
        while (!q.empty())
        {
            int i = q.front();
            q.pop();
            vis[i] = false;
            for (auto& ne : g[i])
            {
                int j = ne.first;
                double s = ne.second;
                if (d[j] < d[i] * s)
                {
                    d[j] = d[i] * s;
                    if (!vis[j])
                    {
                        q.push(j);
                        vis[j] = true;
                    }
                }
            }
        }
        return d[end];
    }
};

Go

func maxProbability(n int, edges [][]int, succProb []float64, start int, end int) float64 {
	g := make([][]pair, n)
	for i, e := range edges {
		a, b, s := e[0], e[1], succProb[i]
		g[a] = append(g[a], pair{b, s})
		g[b] = append(g[b], pair{a, s})
	}
	d := make([]float64, n)
	d[start] = 1
	vis := make([]bool, n)
	q := []int{start}
	vis[start] = true
	for len(q) > 0 {
		i := q[0]
		q = q[1:]
		vis[i] = false
		for _, ne := range g[i] {
			j, s := ne.idx, ne.s
			if d[j] < d[i]*s {
				d[j] = d[i] * s
				if !vis[j] {
					q = append(q, j)
					vis[j] = true
				}
			}
		}
	}
	return d[end]
}

type pair struct {
	idx int
	s   float64
}

...