forked from Thinklab-SJTU/ThinkMatch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_qap.py
178 lines (138 loc) · 6.28 KB
/
eval_qap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import time
from datetime import datetime
from pathlib import Path
import xlwt
from src.dataset.data_loader import QAPDataset, get_dataloader
from src.evaluation_metric import objective_score
from src.parallel import DataParallel
from src.utils.model_sl import load_model
from src.utils.data_to_cuda import data_to_cuda
from src.utils.config import cfg
def eval_model(model, alphas, dataloader, eval_epoch=None, verbose=False):
print('Start evaluation...')
since = time.time()
device = next(model.parameters()).device
if eval_epoch is not None:
model_path = str(Path(cfg.OUTPUT_PATH) / 'params' / 'params_{:04}.pt'.format(eval_epoch))
print('Loading model parameters from {}'.format(model_path))
load_model(model, model_path)
was_training = model.training
model.eval()
ds = dataloader.dataset
classes = ds.classes
cls_cache = ds.cls
pcks = torch.zeros(len(classes), len(alphas), device=device)
accs = torch.zeros(len(classes), device=device)
wb = xlwt.Workbook()
sheet = wb.add_sheet('QAPLIB')
name_idx = 0
score_idx = 1
time_idx = 2
sheet.write(0, name_idx, 'instance')
sheet.write(0, score_idx, 'score')
sheet.write(0, time_idx, 'time')
wb_idx = 1
for i, cls in enumerate(classes):
if verbose:
print('Evaluating class {}: {}/{}'.format(cls, i, len(classes)))
running_since = time.time()
iter_num = 0
ds.cls = cls
pck_match_num = torch.zeros(len(alphas), device=device)
pck_total_num = torch.zeros(len(alphas), device=device)
acc_match_num = torch.zeros(1, device=device)
acc_total_num = torch.zeros(1, device=device)
rel_sum = torch.zeros(1, device=device)
rel_num = torch.zeros(1, device=device)
for inputs in dataloader:
if model.module.device != torch.device('cpu'):
inputs = data_to_cuda(inputs)
ori_affmtx = inputs['aff_mat']
solution = inputs['solution']
name = inputs['name']
n1_gt, n2_gt = inputs['ns']
perm_mat = inputs['gt_perm_mat']
batch_num = perm_mat.size(0)
iter_num = iter_num + 1
fwd_since = time.time()
if 'esc16f' in name:
print('esc16f - 0')
continue
with torch.set_grad_enabled(False):
_ = None
pred = model(inputs)
x_pred, affmtx = pred['perm_mat'], pred['aff_mat']
fwd_time = time.time() - fwd_since
obj_score = objective_score(x_pred, ori_affmtx)
opt_obj_score = objective_score(perm_mat, ori_affmtx)
ori_obj_score = solution
for n, x, y, z in zip(name, obj_score, opt_obj_score, ori_obj_score):
rel = (x - z) / x
print('{} - Solved: {:.0f}, Feas: {:.0f}, Opt/Bnd: {:.0f}, Gap: {:.0f}, Rel: {:.4f}, time: {:.3f}'.
format(n, x, y, z, x - z, rel, fwd_time))
if not torch.isnan(rel):
rel_sum += rel
sheet.write(wb_idx, name_idx, n)
sheet.write(wb_idx, score_idx, x.item())
sheet.write(wb_idx, time_idx, fwd_time)
wb_idx += 1
#rel_num += 1
if iter_num % cfg.STATISTIC_STEP == 0 and verbose:
running_speed = cfg.STATISTIC_STEP * batch_num / (time.time() - running_since)
print('Class {:<8} Iteration {:<4} {:>4.2f}sample/s'.format(cls, iter_num, running_speed))
running_since = time.time()
pcks[i] = pck_match_num / pck_total_num
accs[i] = acc_match_num / acc_total_num
if verbose:
print('Class {} PCK@{{'.format(cls) +
', '.join(list(map('{:.2f}'.format, alphas.tolist()))) + '} = {' +
', '.join(list(map('{:.4f}'.format, pcks[i].tolist()))) + '}')
print('Class {} acc = {:.4f}'.format(cls, accs[i]))
time_elapsed = time.time() - since
print('Evaluation complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
model.train(mode=was_training)
ds.cls = cls_cache
# print result
print('mean relative: {:.4f}'.format(float(rel_sum / rel_num)))
for i in range(len(alphas)):
print('PCK@{:.2f}'.format(alphas[i]))
for cls, single_pck in zip(classes, pcks[:, i]):
print('{} = {:.4f}'.format(cls, single_pck))
print('average = {:.4f}'.format(torch.mean(pcks[:, i])))
print('Matching accuracy')
for cls, single_acc in zip(classes, accs):
print('{} = {:.4f}'.format(cls, single_acc))
print('average = {:.4f}'.format(torch.mean(accs)))
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
wb.save( str(Path(cfg.OUTPUT_PATH) / ('eval_' + now_time + '.xls')))
return accs
if __name__ == '__main__':
from src.utils.dup_stdout_manager import DupStdoutFileManager
from src.utils.parse_args import parse_args
from src.utils.print_easydict import print_easydict
args = parse_args('Deep learning of graph matching evaluation code.')
import importlib
mod = importlib.import_module(cfg.MODULE)
Net = mod.Net
torch.manual_seed(cfg.RANDOM_SEED)
qap_dataset = QAPDataset(cfg.DATASET_FULL_NAME,
sets='test',
length=cfg.EVAL.SAMPLES,
pad=cfg.PAIR.PADDING,
obj_resize=cfg.PAIR.RESCALE)
dataloader = get_dataloader(qap_dataset)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
model = model.to(device)
model = DataParallel(model, device_ids=cfg.GPUS)
if not Path(cfg.OUTPUT_PATH).exists():
Path(cfg.OUTPUT_PATH).mkdir(parents=True)
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
with DupStdoutFileManager(str(Path(cfg.OUTPUT_PATH) / ('eval_log_' + now_time + '.log'))) as _:
print_easydict(cfg)
alphas = torch.tensor(cfg.EVAL.PCK_ALPHAS, dtype=torch.float32, device=device)
classes = dataloader.dataset.classes
pcks = eval_model(model, alphas, dataloader,
eval_epoch=cfg.EVAL.EPOCH if cfg.EVAL.EPOCH != 0 else None,
verbose=True)