forked from osresearch/papercraft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhiddenwire.c
806 lines (677 loc) · 16.5 KB
/
hiddenwire.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/** \file
* Render a hidden wireframe version of an STL file.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include "v3.h"
#include "camera.h"
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
static int debug = 1;
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
v3_t normal;
v3_t p[3];
uint16_t attr;
} __attribute__((__packed__))
stl_face_t;
typedef struct _tri_t tri_t;
struct _tri_t
{
v3_t p[3]; // camera space
v3_t normal; // camera space
v3_t normal_xyz; // original xyz space
float min[3]; // camera space
float max[3]; // camera space
tri_t * next;
tri_t ** prev;
};
typedef struct _seg_t seg_t;
struct _seg_t {
v3_t p[2];
v3_t src[2];
seg_t * next;
};
void
svg_line(
const char * color,
const float * p1,
const float * p2,
float thick
)
{
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\" stroke-width=\"%.1fpx\"/>\n",
p1[0],
p1[1],
p2[0],
p2[1],
color,
thick
);
}
static inline int
v2_eq(
const float p0[],
const float p1[],
const float eps
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
// are the points within epsilon of each other?
if (-eps < dx && dx < eps
&& -eps < dy && dy < eps)
return 1;
// nope, not equal
return 0;
}
/** Compute the points of intersection for two segments in 2d, and z points.
*
* This is a specialized ray intersection algorithm for the
* hidden wire-frame removal code that computes the intersection
* points for two rays (in 2D, "orthographic") and then computes
* the Z depth for the intersections along each of the segments.
*
* Returns -1 for non-intersecting, otherwise a ratio of how far
* along the intersection is on the l0.
*/
float
hidden_intersect(
const v3_t * const p0,
const v3_t * const p1,
const v3_t * const p2,
const v3_t * const p3,
v3_t * const l0_int,
v3_t * const l1_int
)
{
const float p0_x = p0->p[0];
const float p0_y = p0->p[1];
const float p0_z = p0->p[2];
const float p1_x = p1->p[0];
const float p1_y = p1->p[1];
const float p1_z = p1->p[2];
const float p2_x = p2->p[0];
const float p2_y = p2->p[1];
const float p2_z = p2->p[2];
const float p3_x = p3->p[0];
const float p3_y = p3->p[1];
const float p3_z = p3->p[2];
const float s1_x = p1_x - p0_x;
const float s1_y = p1_y - p0_y;
const float s2_x = p3_x - p2_x;
const float s2_y = p3_y - p2_y;
// compute r x s
const float d = -s2_x * s1_y + s1_x * s2_y;
// if they are close to parallel, then we do not need to check
// for intersection (we define that as "non-intersecting")
if (-EPS < d && d < EPS)
return -1;
// Compute how far along each line they would interesect
const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
// if they are not within the ratio (0,1), then the intersecton occurs
// outside of the segments and is not of concern
if (r0 < 0 || r0 > 1)
return -1;
if (r1 < 0 || r1 > 1)
return -1;
// Collision detected with the segments
if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n",
p0_x, p0_y, p0_z,
p1_x, p1_y, p1_z,
p2_x, p2_y, p2_z,
p3_x, p3_y, p2_z,
r0,
r1
);
const float ix = p0_x + (r0 * s1_x);
const float iy = p0_y + (r0 * s1_y);
// compute the z intercept for each on the two different coordinates
if(l0_int)
{
*l0_int = (v3_t){{
ix,
iy,
p0_z + r0 * (p1_z - p0_z)
}};
}
if(l1_int)
{
*l1_int = (v3_t){{
ix,
iy,
p2_z + r1 * (p3_z - p2_z)
}};
}
return r0;
}
tri_t *
tri_new(
const v3_t * p_cam,
const v3_t * p_xyz
)
{
tri_t * const t = calloc(1, sizeof(*t));
if (!t)
return NULL;
for(int i = 0 ; i < 3 ; i++)
t->p[i] = p_cam[i];
// precompute the normals
t->normal = v3_norm(v3_cross(
v3_sub(t->p[1], t->p[0]),
v3_sub(t->p[2], t->p[1])
));
t->normal_xyz = v3_norm(v3_cross(
v3_sub(p_xyz[1], p_xyz[0]),
v3_sub(p_xyz[2], p_xyz[1])
));
// compute the bounding box for the triangle in camera space
for(int j = 0 ; j < 3 ; j++)
{
t->min[j] = min(min(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
t->max[j] = max(max(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
}
return t;
}
// insert a triangle into our z-sorted list
void
tri_insert(
tri_t ** zlist,
tri_t * t
)
{
while(1)
{
tri_t * const iter = *zlist;
if (!iter)
break;
// check to see if our new triangle is closer than
// the current triangle
if(iter->min[2] > t->min[2])
break;
zlist = &(iter->next);
}
// either we reached the end of the list,
// or we have found where our new triangle is sorted
t->next = *zlist;
*zlist = t;
if (t->next)
t->next->prev = &t->next;
}
void
tri_delete(tri_t * t)
{
if (t->next)
t->next->prev = t->prev;
if (t->prev)
*(t->prev) = t->next;
t->next = NULL;
t->prev = NULL;
free(t);
}
seg_t *
seg_new(
const v3_t p0,
const v3_t p1
)
{
seg_t * const s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->p[0] = p0;
s->p[1] = p1;
s->src[0] = p0;
s->src[1] = p1;
s->next = NULL;
return s;
}
void
seg_print(
const seg_t * const s
)
{
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f (was %.0f,%.0f -> %.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[1].p[0],
s->p[1].p[1],
s->src[0].p[0],
s->src[0].p[1],
s->src[1].p[0],
s->src[1].p[1]
);
}
void
tri_print(
const tri_t * const t
)
{
fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f norm %.3f,%.3f,%.3f\n",
t->p[0].p[0],
t->p[0].p[1],
t->p[0].p[2],
t->p[1].p[0],
t->p[1].p[1],
t->p[1].p[2],
t->p[2].p[0],
t->p[2].p[1],
t->p[2].p[2],
t->normal.p[0],
t->normal.p[1],
t->normal.p[2]
);
}
/* Check if two triangles are coplanar and share an edge.
*
* Returns -1 if not coplanar, 0-2 for the edge in t0 that they share.
*/
int
tri_coplanar(
const tri_t * const t0,
const tri_t * const t1,
const float coplanar_eps
)
{
// the two normals must be parallel-enough
const float angle = v3_mag(v3_sub(t0->normal_xyz, t1->normal_xyz));
if (angle < -coplanar_eps || +coplanar_eps < angle)
return -1;
// find if there are two points shared
unsigned matches = 0;
for(int i = 0 ; i < 3 ; i++)
{
for(int j = 0 ; j < 3 ; j++)
{
if (!v3_eq(&t0->p[i], &t1->p[j]))
continue;
matches |= 1 << i;
break;
}
}
switch(matches)
{
case 0x3: return 0;
case 0x6: return 1;
case 0x5: return 2;
case 0x7:
fprintf(stderr, "uh, three points match?\n");
tri_print(t0);
tri_print(t1);
return -1;
default:
// no shared edge
return -1;
}
}
/*
* Find the Z point of an XY coordinate in a triangle.
*
* p can be written as a combination of t01 and t02,
* p - t0 = a * (t1 - t0) + b * (t2 - t0)
* setting t0 to 0, this becomes:
* p = a * t1 + b * t2
* which is two equations with two unknowns
*/
int
tri_find_z(
const tri_t * const t,
const v3_t * const p,
float * const zout
)
{
const float t1x = t->p[1].p[0] - t->p[0].p[0];
const float t1y = t->p[1].p[1] - t->p[0].p[1];
const float t1z = t->p[1].p[2] - t->p[0].p[2];
const float t2x = t->p[2].p[0] - t->p[0].p[0];
const float t2y = t->p[2].p[1] - t->p[0].p[1];
const float t2z = t->p[2].p[2] - t->p[0].p[2];
const float px = p->p[0] - t->p[0].p[0];
const float py = p->p[1] - t->p[0].p[1];
const float a = (px * t2y - py * t2x) / (t1x * t2y - t2x * t1y);
const float b = (px * t1y - py * t1x) / (t2x * t1y - t1x * t2y);
const float z = t->p[0].p[2] + a * t1z + b * t2z;
if (zout)
*zout = z;
return 0 <= a && 0 <= b && a + b <= 1;
}
/*
* Recursive algorithm:
* Given a line segment and a list of triangles,
* find if the line segment crosses any triangle.
* If it crosses a triangle the segment will be shortened
* and an additional one might be created.
* Recusively try intersecting the new segment (starting at the same triangle)
* and then continue trying the shortened segment.
*/
void
tri_seg_intersect(
const tri_t * zlist,
seg_t * s,
seg_t ** slist_visible
)
{
const float p0z = s->p[0].p[2];
const float p1z = s->p[1].p[2];
const float seg_max_z = max(p0z, p1z);
// avoid processing empty segments
const float seg_len = v3_len(&s->p[0], &s->p[1]);
if (seg_len < EPS)
return;
static int recursive;
recursive++;
//fprintf(stderr, "%d: processing segment ", recursive++); seg_print(s);
for( const tri_t * t = zlist ; t ; t = t->next )
{
// if the segment is closer than the triangle,
// then we no longer have to check any further into
// the zlist (it is sorted by depth).
if (seg_max_z <= t->min[2])
break;
// make sure that we're not comparing to our own triangle
// or one that shares an edge with us (which might be in
// a different order)
/*
if (v2_eq(s->src[0].p, t->p[0].p, 0.005)
&& v2_eq(s->src[1].p, t->p[1].p, 0.005))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.005)
&& v2_eq(s->src[1].p, t->p[2].p, 0.005))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.005)
&& v2_eq(s->src[1].p, t->p[0].p, 0.005))
continue;
if (v2_eq(s->src[0].p, t->p[1].p, 0.005)
&& v2_eq(s->src[1].p, t->p[0].p, 0.005))
continue;
if (v2_eq(s->src[0].p, t->p[2].p, 0.005)
&& v2_eq(s->src[1].p, t->p[1].p, 0.005))
continue;
if (v2_eq(s->src[0].p, t->p[0].p, 0.005)
&& v2_eq(s->src[1].p, t->p[2].p, 0.005))
continue;
*/
float z0, z1;
int inside0 = tri_find_z(t, &s->p[0], &z0);
int inside1 = tri_find_z(t, &s->p[1], &z1);
// if both are inside but the segment is infront of the
// triangle, then we retain the segment.
// otherwies we discard the segment
if (inside0 && inside1)
{
if (s->p[0].p[2] <= z0
&& s->p[1].p[2] <= z1)
continue;
recursive--;
return;
}
// split the segment for each intersection with the
// triangle segments and add it to the work queue.
int intersections = 0;
v3_t is[3] = {}; // 3d point of segment intercept
v3_t it[3] = {}; // 3d point of triangle intercept
for(int j = 0 ; j < 3 ; j++)
{
float ratio = hidden_intersect(
&s->p[0], &s->p[1],
&t->p[j], &t->p[(j+1)%3],
&is[intersections],
&it[intersections]
);
if (ratio < 0)
continue;
intersections++;
}
// if none of them intersect, we keep looking
if (intersections == 0)
continue;
if (intersections == 3)
{
// this likely means that the triangle is very, very
// small, so let's just throw away this line segment
recursive--;
return;
}
if (intersections == 2)
{
// figure out how far it is to each of the intersections
const float d00 = v3_len(&s->p[0], &is[0]);
const float d01 = v3_len(&s->p[0], &is[1]);
const float d10 = v3_len(&s->p[1], &is[0]);
const float d11 = v3_len(&s->p[1], &is[1]);
// discard segments that have two interesections that match
// the segment exactly (distance from segment ends to
// intersection point close enough to zero).
if (d00 < EPS && d11 < EPS)
{
recursive--;
return;
}
if (d01 < EPS && d10 < EPS)
{
recursive--;
return;
}
// if the segment intersection is closer than the triangle,
// then we do nothing. degenerate cases are not handled
if (d00 <= d01
&& is[0].p[2] <= it[0].p[2]
&& is[1].p[2] <= it[1].p[2])
continue;
if (d00 > d01
&& is[1].p[2] <= it[0].p[2]
&& is[0].p[2] <= it[1].p[2])
continue;
// segment is behind the triangle,
// we have to create a new segment
// and shorten the existing segment
// find the two intersections that we have
// update the src field
// we need to create a new segment
seg_t * news;
if (d00 < d01)
{
// split from p0 to ix0
news = seg_new(s->p[0], is[0]);
news->src[0] = s->src[0];
news->src[1] = s->src[1];
s->p[0] = is[1];
} else {
// split from p0 to ix1
news = seg_new(s->p[0], is[1]);
news->src[0] = s->src[0];
news->src[1] = s->src[1];
s->p[0] = is[0];
}
// recursively start splitting the new segment
// starting at the next triangle down the z-depth
tri_seg_intersect(zlist->next, news, slist_visible);
// continue splitting our current segment
continue;
}
if (intersections == 1)
{
// if there is an intersection, but the segment intercept
// is closer than the triangle intercept, then no problem.
// we do not bother with degenerate cases of intersecting
// triangles
if (is[0].p[2] <= it[0].p[2]
&& is[1].p[2] <= it[0].p[2])
{
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 10);
continue;
}
if (inside0)
{
// shorten it on the 0 side
s->p[0] = is[0];
continue;
} else
if (inside1)
{
// shorten it on the 1 side
s->p[1] = is[0];
continue;
} else {
// both outside, but an intersection?
// split at that point and hope for the best
seg_t * const news = seg_new(s->p[0], is[0]);
news->src[0] = s->src[0];
news->src[1] = s->src[1];
s->p[0] = is[0];
tri_seg_intersect(zlist->next, news, slist_visible);
// continue splitting our current segment
continue;
}
}
}
// if we've reached here the segment is visible
// and should be added to the visible list
s->next = *slist_visible;
*slist_visible = s;
recursive--;
}
int main(
int argc,
char ** argv
)
{
const size_t max_len = 32 << 20;
uint8_t * const buf = calloc(max_len, 1);
float phi = argc > 1 ? atof(argv[1]) * M_PI/180 : 0;
float theta = argc > 2 ? atof(argv[2]) * M_PI/180 : 0;
float psi = argc > 3 ? atof(argv[3]) * M_PI/180 : 0;
int filter_level = argc > 4 ? atoi(argv[4]) : 4;
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
int backface = filter_level > 0;
int hidden = filter_level > 1;
int coplanar = filter_level > 2;
float coplanar_eps = 0.001;
if(debug)
{
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
}
// looking at (0,0,0)
v3_t eye = { { 0, 0, 400 } };
const camera_t * const cam = camera_new(eye, phi, theta, psi);
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
float off_x = 500;
float off_y = 500;
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
int rejected = 0;
tri_t * zlist = NULL;
seg_t * slist = NULL;
seg_t * slist_visible = NULL;
int retained = 0;
// transform the stl by the camera projection and generate
// a z-sorted list of triangles
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
v3_t s[3];
for(int j = 0 ; j < 3 ; j++)
camera_project(cam, &stl->p[j], &s[j]);
if(0)fprintf(stderr, "%.3f,%.3f,%.3f -> %.0f,%.0f\n",
stl->p[0].p[0],
stl->p[0].p[1],
stl->p[0].p[2],
s[0].p[0],
s[0].p[1]
);
tri_t * const tri = tri_new(s, stl->p);
// reject this face if any of the vertices are behind us
if (tri->min[2] < 0)
goto reject;
// do a back-face cull to determine if this triangle
// is not facing us. we have to determine the orientation
// from the winding of the new projection
if (backface && tri->normal.p[2] <= 0)
goto reject;
retained++;
// it passes the first tests, so insert the triangle
// into the list and the three line segments
tri_insert(&zlist, tri);
continue;
reject:
tri_delete(tri);
rejected++;
}
if (debug)
fprintf(stderr, "Retained %d, rejected %d triangles\n", retained, rejected);
// generate a list of segments, dropping any coplanar ones
rejected = 0;
for(tri_t * t = zlist ; t ; t = t->next)
{
unsigned matches = 0;
if(coplanar)
for(tri_t * t2 = zlist ; t2 ; t2 = t2->next)
{
if (t == t2)
continue;
const int edge = tri_coplanar(t, t2, coplanar_eps);
if (edge < 0)
continue;
matches |= 1 << edge;
}
for(int j = 0 ; j < 3 ; j++)
{
// drop any that are coplanar
if (matches & (1 << j))
{
rejected++;
continue;
}
seg_t * s = seg_new(t->p[j], t->p[(j+1) % 3]);
s->next = slist;
slist = s;
}
}
if (debug)
fprintf(stderr, "Rejected %d coplanar segments\n", rejected);
// we now have a z-sorted list of triangles
rejected = 0;
if(hidden)
{
// work on each segment, intersecting it with all of the triangles
while(slist)
{
seg_t * s = slist;
slist = s->next;
tri_seg_intersect(zlist, s, &slist_visible);
}
} else {
// don't do any intersection tests
slist_visible = slist;
slist = NULL;
}
// display all of the visible segments
for(seg_t * s = slist_visible ; s ; s = s->next)
{
svg_line("#FF0000", s->p[0].p, s->p[1].p, 1);
}
if (debug)
fprintf(stderr, "Occluded %d triangles\n", rejected);
printf("</g>\n");
printf("</svg>\n");
return 0;
}