forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAccuracyTest.php
58 lines (43 loc) · 1.59 KB
/
AccuracyTest.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
<?php
declare(strict_types=1);
namespace tests\Phpml\Metric;
use Phpml\Classification\SVC;
use Phpml\CrossValidation\RandomSplit;
use Phpml\Dataset\Demo\IrisDataset;
use Phpml\Metric\Accuracy;
use Phpml\SupportVectorMachine\Kernel;
use PHPUnit\Framework\TestCase;
class AccuracyTest extends TestCase
{
/**
* @expectedException \Phpml\Exception\InvalidArgumentException
*/
public function testThrowExceptionOnInvalidArguments()
{
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'a'];
Accuracy::score($actualLabels, $predictedLabels);
}
public function testCalculateNormalizedScore()
{
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'a', 'b', 'b'];
$this->assertEquals(0.5, Accuracy::score($actualLabels, $predictedLabels));
}
public function testCalculateNotNormalizedScore()
{
$actualLabels = ['a', 'b', 'a', 'b'];
$predictedLabels = ['a', 'b', 'b', 'b'];
$this->assertEquals(3, Accuracy::score($actualLabels, $predictedLabels, false));
}
public function testAccuracyOnDemoDataset()
{
$dataset = new RandomSplit(new IrisDataset(), 0.5, 123);
$classifier = new SVC(Kernel::RBF);
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
$predicted = $classifier->predict($dataset->getTestSamples());
$accuracy = Accuracy::score($dataset->getTestLabels(), $predicted);
$expected = PHP_VERSION_ID >= 70100 ? 1 : 0.959;
$this->assertEquals($expected, $accuracy, '', 0.01);
}
}