forked from changwoolee/lenet5_hls
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
443 lines (362 loc) · 14.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
* main.cpp
*
* Created on: 2017. 4. 11.
* Author: woobes
*/
//#include "image_convolution.h"
#include <vector>
#include <numeric>
#include "lenet5/lenet5.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include "sdx_test.h"
#include "./MNIST_DATA/MNIST_DATA.h"
#include "LOG.h"
// load weights & biases
void load_model(string filename, float* weight, int size) {
ifstream file(filename.c_str(), ios::in);
if (file.is_open()) {
for (int i = 0; i < size; i++) {
float temp = 0.0;
file >> temp;
weight[i] = temp;
}
}else{
cout<<"Loading model is failed : "<<filename<<endl;
}
}
using namespace std;
int main(int argc, char *argv[]){
int server_socket;
int port;
struct sockaddr_in serveraddr, clientaddr;
// UDP prepare
if(argc>1){
port = atoi(argv[1]);
if((server_socket = socket(PF_INET,SOCK_DGRAM,0))<0){
perror("Cannot create socket\n");
exit(1);
}
bzero((char *)&serveraddr, sizeof(serveraddr));
bzero((char *)&clientaddr,sizeof(clientaddr));
serveraddr.sin_family=AF_INET;
serveraddr.sin_port=htons(port);
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(server_socket, (struct sockaddr*)&serveraddr, sizeof(serveraddr))<0){
perror("Cannot Bind the UDP Server\n");
exit(1);
}
}
// Calc execution time
clock_t start_point, end_point, c1_start,c1_stop, c2_start,c2_stop,c3_start,c3_stop;
vector<clock_t> v_c1,v_c2,v_c3;
start_point = clock();
cout<<"------------------------------------------------------------------\n"
<<" LeNet-5 HW accelerator test\n"
<<" version 0.2.1\n"
#ifdef HW_TEST
<<" HW Mode\n"
#else
<< " SW Mode\n"
#endif
<<"Original source : Acclerationg Lenet-5 (Base Version) for Default,\n"
<<"implemented by Constant Park, HYU, ESoCLab[Version 1.0]\n"
<<"HW implementated by CW Lee & JH Woo\n"
<<"batch : "<<image_Batch<<" test img num : "<<image_Move<<"\n"
<<"------------------------------------------------------------------"<<endl;
float* MNIST_IMG;
int* MNIST_LABEL;
if(argc==1){
MNIST_IMG = (float*) malloc(image_Move*MNIST_PAD_SIZE*sizeof(float)); // MNIST TEST IMG
MNIST_LABEL = (int*) malloc(image_Move*sizeof(int)); // MNIST TEST LABEL
if(!MNIST_IMG || !MNIST_LABEL){
cout<< "Memory allocation error(0)"<<endl;
exit(1);
}
// read MNIST data & label
READ_MNIST_DATA("/mnt/LeNet5/MNIST_DATA/t10k-images.idx3-ubyte",MNIST_IMG,-1.0f, 1.0f, image_Move);
READ_MNIST_LABEL("/mnt/LeNet5/MNIST_DATA/t10k-labels.idx1-ubyte",MNIST_LABEL,image_Move,false);
}
float* Wconv1= (float*) sds_alloc(CONV_1_TYPE*CONV_1_SIZE*sizeof(float));
float* bconv1=(float*)sds_alloc(CONV_1_TYPE*sizeof(float));
float* Wconv2=(float*)sds_alloc(CONV_2_TYPE*CONV_1_TYPE*CONV_2_SIZE*sizeof(float));
float* bconv2=(float*)sds_alloc(CONV_2_TYPE*sizeof(float));
float* Wconv3=(float*)sds_alloc(CONV_3_TYPE*CONV_2_TYPE*CONV_3_SIZE*sizeof(float));
float* bconv3=(float*)sds_alloc(CONV_3_TYPE*sizeof(float));
float* Wpool1= (float*) malloc(POOL_1_TYPE*4*sizeof(float));
float* Wpool2= (float*) malloc(POOL_2_TYPE*4*sizeof(float));
float* bpool1= (float*) malloc(POOL_1_TYPE*sizeof(float));
float* bpool2= (float*) malloc(POOL_2_TYPE*sizeof(float));
float* Wfc1 = (float*) malloc(FILTER_NN_1_SIZE*sizeof(float));
float* bfc1 = (float*) malloc(BIAS_NN_1_SIZE*sizeof(float));
float* Wfc2 = (float*) malloc(FILTER_NN_2_SIZE*sizeof(float));
float* bfc2 = (float*) malloc(BIAS_NN_2_SIZE*sizeof(float));
if(!Wconv1||!Wconv2||!Wconv3||!bconv1||!bconv2||!bconv3||!Wpool1||!Wpool2||!bpool1||!bpool2||!Wfc1||!Wfc2||!bfc1||!bfc2){
cout<<"mem alloc error(1)"<<endl;
exit(1);
}
cout<<"Load models"<<endl;
load_model("/mnt/LeNet5/filter/Wconv1.mdl",Wconv1,CONV_1_TYPE*CONV_1_SIZE);
load_model("/mnt/LeNet5/filter/Wconv3_modify.mdl",Wconv2,CONV_2_TYPE*CONV_1_TYPE*CONV_2_SIZE);
load_model("/mnt/LeNet5/filter/Wconv5.mdl",Wconv3,CONV_3_TYPE*CONV_2_TYPE*CONV_3_SIZE);
load_model("/mnt/LeNet5/filter/bconv1.mdl",bconv1,CONV_1_TYPE);
load_model("/mnt/LeNet5/filter/bconv3.mdl",bconv2,CONV_2_TYPE);
load_model("/mnt/LeNet5/filter/bconv5.mdl",bconv3,CONV_3_TYPE);
load_model("/mnt/LeNet5/filter/Wpool1.mdl",Wpool1,POOL_1_TYPE*4);
load_model("/mnt/LeNet5/filter/Wpool2.mdl",Wpool2,POOL_2_TYPE*4);
load_model("/mnt/LeNet5/filter/bpool1.mdl",bpool1,POOL_1_TYPE);
load_model("/mnt/LeNet5/filter/bpool2.mdl",bpool2,POOL_2_TYPE);
load_model("/mnt/LeNet5/filter/Wfc1.mdl",Wfc1,FILTER_NN_1_SIZE);
load_model("/mnt/LeNet5/filter/Wfc2.mdl",Wfc2,FILTER_NN_2_SIZE);
load_model("/mnt/LeNet5/filter/bfc1.mdl",bfc1,BIAS_NN_1_SIZE);
load_model("/mnt/LeNet5/filter/bfc2.mdl",bfc2,BIAS_NN_2_SIZE);
cout<<"model loaded"<<endl;
// Memory allocation
float* input_layer = (float*) sds_alloc(image_Batch *INPUT_WH * INPUT_WH*sizeof(float));
float* hconv1 = (float*) sds_alloc(image_Batch * CONV_1_TYPE * CONV_1_OUTPUT_SIZE*sizeof(float));
float* pool1 = (float*) sds_alloc(image_Batch * CONV_1_TYPE * POOL_1_OUTPUT_SIZE*sizeof(float));
float* hconv2 = (float*) sds_alloc(image_Batch * CONV_2_TYPE * CONV_2_OUTPUT_SIZE*sizeof(float));
float* pool2 = (float*) sds_alloc(image_Batch * CONV_2_TYPE * POOL_2_OUTPUT_SIZE*sizeof(float));
float* hconv3 = (float*) sds_alloc(image_Batch * CONV_3_TYPE*sizeof(float));
float* hfc1 = (float*) malloc(image_Batch * OUTPUT_NN_1_SIZE*sizeof(float));
float* output = (float*) malloc(image_Batch * OUTPUT_NN_2_SIZE*sizeof(float));
if(!input_layer || !hconv1 || !pool1 || !hconv2 || !pool2 || !hconv3 || !hfc1 || !output){
cout<<"Memory allocation error(2)"<<endl;
exit(1);
}
///////////////////////////////// TEST /////////////////////////////////////////
// cycle counters
//perf_counter hw_ctr_tot, hw_ctr_conv1, hw_ctr_conv2, hw_ctr_conv3, hw_ctr_fc1, hw_ctr_fc2;//hw_ctr_pool1, hw_ctr_pool2,
//perf_counter sw_ctr_tot, sw_ctr_conv1, sw_ctr_conv2, sw_ctr_conv3, sw_ctr_fc1, sw_ctr_fc2;//sw_ctr_pool1, sw_ctr_pool2,
// test number
int test_num = image_Move/image_Batch;
#ifdef LOG
stringstream ss;
#endif
#ifdef HW_TEST
if(argc>1){
unsigned char buffer[4096];
int addr_length;
int init=1;
while(1){
addr_length = sizeof(clientaddr);
int length = recvfrom(server_socket,buffer,sizeof(buffer),0,(sockaddr*)&clientaddr,(socklen_t*)&addr_length);
cout<<"Received | length = "<<length<<" msg[0] = "<<buffer[0]<<" msg[1025] = "<<buffer[1025]<<endl;
if(buffer[0]=='b'&&buffer[1]=='y'&&buffer[2]=='e'){
break;
}
if(length==1026 && buffer[0]=='s' && buffer[1025]=='e'){
cout<<"image received"<<endl;
preprocessTestImage(input_layer,buffer,-1.0f,1.0f);
cout<<"image ready"<<endl;
CONVOLUTION_LAYER_1(input_layer,Wconv1,bconv1,hconv1, init);
// S1 layer
POOLING_LAYER_1_SW(hconv1,Wpool1,bpool1,pool1);
// C2 layer
CONVOLUTION_LAYER_2(pool1,Wconv2,bconv2,hconv2,init);
// S2 layer
POOLING_LAYER_2_SW(hconv2,Wpool2,bpool2,pool2);
// C3 layer
CONVOLUTION_LAYER_3(pool2,Wconv3,bconv3,hconv3,init);
// FC1 layer
FULLY_CONNECTED_LAYER_1_SW(hconv3,Wfc1,bfc1,hfc1);
// FC2 layer
FULLY_CONNECTED_LAYER_2_SW(hfc1,Wfc2,bfc2,output);
int result = argmax(output,10);
char send_buffer[1024];
int ret = snprintf(send_buffer,sizeof(send_buffer),"t,%d,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f,%2.6f\n",result,
output[0],output[1],output[2],output[3],output[4],output[5],output[6],output[7],output[8],output[9]);
cout<<"Number : "<<result<<endl;
int len = sendto(server_socket,send_buffer,ret,0,(sockaddr*)&clientaddr, sizeof(clientaddr));
}
init=0;
usleep(100);
}
}
else{
vector<double> result_hw;
double accuracy_hw;
//HW test start
int init=1;
cout<<"HW test start"<<endl;
for(int i=0;i<test_num;i++,init&=0){
for(int batch=0;batch<image_Batch*INPUT_WH*INPUT_WH;batch++)
input_layer[batch] = MNIST_IMG[i*MNIST_PAD_SIZE + batch];
// C1 layer
c1_start=clock();
CONVOLUTION_LAYER_1(input_layer,Wconv1,bconv1,hconv1, init);
c1_stop = clock();
v_c1.push_back(c1_stop-c1_start);
// S1 layer
POOLING_LAYER_1_SW(hconv1,Wpool1,bpool1,pool1);
// C2 layer
c2_start=clock();
CONVOLUTION_LAYER_2(pool1,Wconv2,bconv2,hconv2,init);
c2_stop = clock();
v_c2.push_back(c2_stop-c2_start);
// S2 layer
POOLING_LAYER_2_SW(hconv2,Wpool2,bpool2,pool2);
// C3 layer
c3_start=clock();
CONVOLUTION_LAYER_3(pool2,Wconv3,bconv3,hconv3,init);
c3_stop=clock();
v_c3.push_back(c3_stop-c3_start);
// FC1 layer
FULLY_CONNECTED_LAYER_1_SW(hconv3,Wfc1,bfc1,hfc1);
// FC2 layer
FULLY_CONNECTED_LAYER_2_SW(hfc1,Wfc2,bfc2,output);
#ifdef LOG
get_log(&ss,input_layer,hconv1,pool1,hconv2,pool2,hconv3,hfc1,output);
#endif
result_hw.push_back(equal(MNIST_LABEL[i],argmax(output)));
}
// accuracy estimation
accuracy_hw = 1.0*accumulate(result_hw.begin(),result_hw.end(),0.0);
cout<<"HW test completed"<<endl;
cout<<"accuracy : "<<accuracy_hw<<"/"<<result_hw.size()<<endl;
}
#endif
#ifdef SW_TEST
vector<double> result_sw;
double accuracy_sw;
// SW test
cout<< "SW test start"<<endl;
for(int i=0;i<test_num;i++){
for(int batch=0;batch<image_Batch*INPUT_WH*INPUT_WH;batch++){
input_layer[batch] = MNIST_IMG[i*MNIST_PAD_SIZE + batch];
}
c1_start=clock();
CONVOLUTION_LAYER_1_SW(input_layer,Wconv1,bconv1,hconv1);
c1_stop=clock();
POOLING_LAYER_1_SW(hconv1,Wpool1,bpool1,pool1);
c2_start=clock();
CONVOLUTION_LAYER_2_SW(pool1,Wconv2,bconv2,hconv2);
c2_stop=clock();
POOLING_LAYER_2_SW(hconv2,Wpool2,bpool2,pool2);
c3_start=clock();
CONVOLUTION_LAYER_3_SW(pool2,Wconv3,bconv3,hconv3);
c3_stop=clock();
v_c1.push_back(c1_stop-c1_start);
v_c2.push_back(c2_stop-c2_start);
v_c3.push_back(c3_stop-c3_start);
FULLY_CONNECTED_LAYER_1_SW(hconv3,Wfc1,bfc1,hfc1);
FULLY_CONNECTED_LAYER_2_SW(hfc1,Wfc2,bfc2,output);
result_sw.push_back(equal(MNIST_LABEL[i],argmax(output)));
#ifdef LOG
get_log(&ss,input_layer,hconv1,pool1,hconv2,pool2,hconv3,hfc1,output);
#endif
}
accuracy_sw = accumulate(result_sw.begin(),result_sw.end(),0.0);
cout<<"SW test completed"<<endl;
cout<<"accuracy : "<<accuracy_sw<<"/"<<result_sw.size()<<endl;
#endif
sds_free(input_layer);
sds_free(hconv1);
sds_free(hconv2);
sds_free(hconv3);
sds_free(pool1);
sds_free(pool2);
free(hfc1);
free(output);
sds_free(Wconv1);
sds_free(Wconv2);
sds_free(Wconv3);
sds_free(bconv1);
sds_free(bconv2);
sds_free(bconv3);
free(Wpool1);
free(bpool1);
free(Wpool2);
free(bpool2);
free(Wfc1);
free(bfc1);
free(Wfc2);
free(bfc2);
free(MNIST_IMG);
free(MNIST_LABEL);
/*
stringstream ss;
ss <<"HW accuracy : "<<accuracy_hw<<endl;
ss <<"SW accuracy : "<<accuracy_sw<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_c1 = (double) sw_ctr_conv1.avg_cpu_cycles() / (double) hw_ctr_conv1.avg_cpu_cycles();
ss <<"Average number of CPU cycles running C1 to C3 in software: "
<<sw_ctr_conv1.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running C1 to C3 in hardware: "
<<hw_ctr_conv1.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_c1<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_s1 = (double) sw_ctr_pool1.avg_cpu_cycles() / (double) hw_ctr_pool1.avg_cpu_cycles();
ss <<"Average number of CPU cycles running S1 in software: "
<<sw_ctr_pool1.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running S1 in hardware: "
<<hw_ctr_pool1.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_s1<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_c2 = (double) sw_ctr_conv2.avg_cpu_cycles() / (double) hw_ctr_conv2.avg_cpu_cycles();
ss <<"Average number of CPU cycles running C2 in software: "
<<sw_ctr_conv2.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running C2 in hardware: "
<<hw_ctr_conv2.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_c2<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_s2 = (double) sw_ctr_pool2.avg_cpu_cycles() / (double) hw_ctr_pool2.avg_cpu_cycles();
ss <<"Average number of CPU cycles running S2 in software: "
<<sw_ctr_pool2.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running S2 in hardware: "
<<hw_ctr_pool2.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_s2<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_c3 = (double) sw_ctr_conv3.avg_cpu_cycles() / (double) hw_ctr_conv3.avg_cpu_cycles();
ss <<"Average number of CPU cycles running C3 in software: "
<<sw_ctr_conv3.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running C3 in hardware: "
<<hw_ctr_conv3.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_c3<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
ss <<"Average number of CPU cycles running FC1 in software: "
<<sw_ctr_fc1.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running FC1 in hardware: "
<<hw_ctr_fc1.avg_cpu_cycles()<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
ss <<"Average number of CPU cycles running FC2 in software: "
<<sw_ctr_fc2.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running FC2 in hardware: "
<<hw_ctr_fc2.avg_cpu_cycles()<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
double speedup_tot = (double) sw_ctr_tot.avg_cpu_cycles() / (double) hw_ctr_tot.avg_cpu_cycles();
ss <<"Average number of CPU cycles running total model in software: "
<<sw_ctr_tot.avg_cpu_cycles()<<endl;
ss <<"Average number of CPU cycles running total model in hardware: "
<<hw_ctr_tot.avg_cpu_cycles()<<endl;
ss <<"Speed up: "<<speedup_tot<<endl;
ss <<"----------------------------------------------------------------------------"<<endl;
cout<<ss.str();*/
//print_log("/mnt/model_log/performance.log",&ss);
cout<<"Test Completed"<<endl;
end_point = clock();
double c1_exetime,c2_exetime,c3_exetime;
c1_exetime = (double)accumulate(v_c1.begin(),v_c1.end(),0.0)/(CLOCKS_PER_SEC);
c2_exetime = (double)accumulate(v_c2.begin(),v_c2.end(),0.0)/(CLOCKS_PER_SEC);
c3_exetime = (double)accumulate(v_c3.begin(),v_c3.end(),0.0)/(CLOCKS_PER_SEC);
#ifdef HW_TEST
cout<<"HW execution time : "
#else
cout<<"SW execution time : "
#endif
<<(double)(end_point-start_point)/CLOCKS_PER_SEC<< " seconds\n"
<<"C1 : "<<c1_exetime<<" seconds\n"
<<"C2 : "<<c2_exetime<<" seconds\n"
<<"C3 : "<<c3_exetime<<" seconds\n";
#ifdef LOG
#ifdef HW_TEST
print_log("/mnt/model_log/conv_steps_hw.log",&ss);
#else
print_log("/mnt/model_log/conv_steps_sw.log",&ss);
#endif
#endif
return 0;
}