This repository was archived by the owner on Jan 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathchatbot.py
259 lines (224 loc) · 11.3 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
""" A neural chatbot using sequence to sequence model with
attentional decoder.
This is based on Google Translate Tensorflow model
https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen ([email protected])
CS20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
This file contains the code to run the model.
See README.md for instruction on how to run the starter code.
"""
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import random
import sys
import time
import numpy as np
import tensorflow as tf
from model import ChatBotModel
import config
import data
def _get_random_bucket(train_buckets_scale):
""" Get a random bucket from which to choose a training sample """
rand = random.random()
return min([i for i in range(len(train_buckets_scale))
if train_buckets_scale[i] > rand])
def _assert_lengths(encoder_size, decoder_size, encoder_inputs, decoder_inputs, decoder_masks):
""" Assert that the encoder inputs, decoder inputs, and decoder masks are
of the expected lengths """
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_inputs), decoder_size))
if len(decoder_masks) != decoder_size:
raise ValueError("Weights length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_masks), decoder_size))
def run_step(sess, model, encoder_inputs, decoder_inputs, decoder_masks, bucket_id, forward_only):
""" Run one step in training.
@forward_only: boolean value to decide whether a backward path should be created
forward_only is set to True when you just want to evaluate on the test set,
or when you want to the bot to be in chat mode. """
encoder_size, decoder_size = config.BUCKETS[bucket_id]
_assert_lengths(encoder_size, decoder_size, encoder_inputs, decoder_inputs, decoder_masks)
# input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
for step in range(encoder_size):
input_feed[model.encoder_inputs[step].name] = encoder_inputs[step]
for step in range(decoder_size):
input_feed[model.decoder_inputs[step].name] = decoder_inputs[step]
input_feed[model.decoder_masks[step].name] = decoder_masks[step]
last_target = model.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([model.batch_size], dtype=np.int32)
# output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [model.train_ops[bucket_id], # update op that does SGD.
model.gradient_norms[bucket_id], # gradient norm.
model.losses[bucket_id]] # loss for this batch.
else:
output_feed = [model.losses[bucket_id]] # loss for this batch.
for step in range(decoder_size): # output logits.
output_feed.append(model.outputs[bucket_id][step])
outputs = sess.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], None # Gradient norm, loss, no outputs.
else:
return None, outputs[0], outputs[1:] # No gradient norm, loss, outputs.
def _get_buckets():
""" Load the dataset into buckets based on their lengths.
train_buckets_scale is the inverval that'll help us
choose a random bucket later on.
"""
test_buckets = data.load_data('test_ids.enc', 'test_ids.dec')
data_buckets = data.load_data('train_ids.enc', 'train_ids.dec')
train_bucket_sizes = [len(data_buckets[b]) for b in range(len(config.BUCKETS))]
print("Number of samples in each bucket:\n", train_bucket_sizes)
train_total_size = sum(train_bucket_sizes)
# list of increasing numbers from 0 to 1 that we'll use to select a bucket.
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in range(len(train_bucket_sizes))]
print("Bucket scale:\n", train_buckets_scale)
return test_buckets, data_buckets, train_buckets_scale
def _get_skip_step(iteration):
""" How many steps should the model train before it saves all the weights. """
if iteration < 100:
return 30
return 100
def _check_restore_parameters(sess, saver):
""" Restore the previously trained parameters if there are any. """
ckpt = tf.train.get_checkpoint_state(os.path.dirname(config.CPT_PATH + '/checkpoint'))
if ckpt and ckpt.model_checkpoint_path:
print("Loading parameters for the Chatbot")
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("Initializing fresh parameters for the Chatbot")
def _eval_test_set(sess, model, test_buckets):
""" Evaluate on the test set. """
for bucket_id in range(len(config.BUCKETS)):
if len(test_buckets[bucket_id]) == 0:
print(" Test: empty bucket %d" % (bucket_id))
continue
start = time.time()
encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(test_buckets[bucket_id],
bucket_id,
batch_size=config.BATCH_SIZE)
_, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs,
decoder_masks, bucket_id, True)
print('Test bucket {}: loss {}, time {}'.format(bucket_id, step_loss, time.time() - start))
def train():
""" Train the bot """
test_buckets, data_buckets, train_buckets_scale = _get_buckets()
# in train mode, we need to create the backward path, so forwrad_only is False
model = ChatBotModel(False, config.BATCH_SIZE)
model.build_graph()
saver = tf.train.Saver()
with tf.Session() as sess:
print('Running session')
sess.run(tf.global_variables_initializer())
_check_restore_parameters(sess, saver)
iteration = model.global_step.eval()
total_loss = 0
while True:
skip_step = _get_skip_step(iteration)
bucket_id = _get_random_bucket(train_buckets_scale)
encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(data_buckets[bucket_id],
bucket_id,
batch_size=config.BATCH_SIZE)
start = time.time()
_, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, decoder_masks, bucket_id, False)
total_loss += step_loss
iteration += 1
if iteration % skip_step == 0:
print('Iter {}: loss {}, time {}'.format(iteration, total_loss/skip_step, time.time() - start))
start = time.time()
total_loss = 0
saver.save(sess, os.path.join(config.CPT_PATH, 'chatbot'), global_step=model.global_step)
if iteration % (10 * skip_step) == 0:
# Run evals on development set and print their loss
_eval_test_set(sess, model, test_buckets)
start = time.time()
sys.stdout.flush()
def _get_user_input():
""" Get user's input, which will be transformed into encoder input later """
print("> ", end="")
sys.stdout.flush()
return sys.stdin.readline()
def _find_right_bucket(length):
""" Find the proper bucket for an encoder input based on its length """
return min([b for b in range(len(config.BUCKETS))
if config.BUCKETS[b][0] >= length])
def _construct_response(output_logits, inv_dec_vocab):
""" Construct a response to the user's encoder input.
@output_logits: the outputs from sequence to sequence wrapper.
output_logits is decoder_size np array, each of dim 1 x DEC_VOCAB
This is a greedy decoder - outputs are just argmaxes of output_logits.
"""
print(output_logits[0])
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if config.EOS_ID in outputs:
outputs = outputs[:outputs.index(config.EOS_ID)]
# Print out sentence corresponding to outputs.
return " ".join([tf.compat.as_str(inv_dec_vocab[output]) for output in outputs])
def chat():
""" in test mode, we don't to create the backward path
"""
_, enc_vocab = data.load_vocab(os.path.join(config.PROCESSED_PATH, 'vocab.enc'))
inv_dec_vocab, _ = data.load_vocab(os.path.join(config.PROCESSED_PATH, 'vocab.dec'))
model = ChatBotModel(True, batch_size=1)
model.build_graph()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
_check_restore_parameters(sess, saver)
output_file = open(os.path.join(config.PROCESSED_PATH, config.OUTPUT_FILE), 'a+')
# Decode from standard input.
max_length = config.BUCKETS[-1][0]
print('Welcome to TensorBro. Say something. Enter to exit. Max length is', max_length)
while True:
line = _get_user_input()
if len(line) > 0 and line[-1] == '\n':
line = line[:-1]
if line == '':
break
output_file.write('HUMAN ++++ ' + line + '\n')
# Get token-ids for the input sentence.
token_ids = data.sentence2id(enc_vocab, str(line))
if (len(token_ids) > max_length):
print('Max length I can handle is:', max_length)
line = _get_user_input()
continue
# Which bucket does it belong to?
bucket_id = _find_right_bucket(len(token_ids))
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, decoder_masks = data.get_batch([(token_ids, [])],
bucket_id,
batch_size=1)
# Get output logits for the sentence.
_, _, output_logits = run_step(sess, model, encoder_inputs, decoder_inputs,
decoder_masks, bucket_id, True)
response = _construct_response(output_logits, inv_dec_vocab)
print(response)
output_file.write('BOT ++++ ' + response + '\n')
output_file.write('=============================================\n')
output_file.close()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices={'train', 'chat'},
default='train', help="mode. if not specified, it's in the train mode")
args = parser.parse_args()
if not os.path.isdir(config.PROCESSED_PATH):
data.prepare_raw_data()
data.process_data()
print('Data ready!')
# create checkpoints folder if there isn't one already
data.make_dir(config.CPT_PATH)
if args.mode == 'train':
train()
elif args.mode == 'chat':
chat()
if __name__ == '__main__':
main()