This repository was archived by the owner on Jan 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathdata.py
261 lines (224 loc) · 9.26 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
""" A neural chatbot using sequence to sequence model with
attentional decoder.
This is based on Google Translate Tensorflow model
https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen ([email protected])
CS20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
This file contains the code to do the pre-processing for the
Cornell Movie-Dialogs Corpus.
See readme.md for instruction on how to run the starter code.
"""
import os
import random
import re
import numpy as np
import config
def get_lines():
id2line = {}
file_path = os.path.join(config.DATA_PATH, config.LINE_FILE)
print(config.LINE_FILE)
with open(file_path, 'r', errors='ignore') as f:
# lines = f.readlines()
# for line in lines:
i = 0
try:
for line in f:
parts = line.split(' +++$+++ ')
if len(parts) == 5:
if parts[4][-1] == '\n':
parts[4] = parts[4][:-1]
id2line[parts[0]] = parts[4]
i += 1
except UnicodeDecodeError:
print(i, line)
return id2line
def get_convos():
""" Get conversations from the raw data """
file_path = os.path.join(config.DATA_PATH, config.CONVO_FILE)
convos = []
with open(file_path, 'r') as f:
for line in f.readlines():
parts = line.split(' +++$+++ ')
if len(parts) == 4:
convo = []
for line in parts[3][1:-2].split(', '):
convo.append(line[1:-1])
convos.append(convo)
return convos
def question_answers(id2line, convos):
""" Divide the dataset into two sets: questions and answers. """
questions, answers = [], []
for convo in convos:
for index, line in enumerate(convo[:-1]):
questions.append(id2line[convo[index]])
answers.append(id2line[convo[index + 1]])
assert len(questions) == len(answers)
return questions, answers
def prepare_dataset(questions, answers):
# create path to store all the train & test encoder & decoder
make_dir(config.PROCESSED_PATH)
# random convos to create the test set
test_ids = random.sample([i for i in range(len(questions))],config.TESTSET_SIZE)
filenames = ['train.enc', 'train.dec', 'test.enc', 'test.dec']
files = []
for filename in filenames:
files.append(open(os.path.join(config.PROCESSED_PATH, filename),'w'))
for i in range(len(questions)):
if i in test_ids:
files[2].write(questions[i] + '\n')
files[3].write(answers[i] + '\n')
else:
files[0].write(questions[i] + '\n')
files[1].write(answers[i] + '\n')
for file in files:
file.close()
def make_dir(path):
""" Create a directory if there isn't one already. """
try:
os.mkdir(path)
except OSError:
pass
def basic_tokenizer(line, normalize_digits=True):
""" A basic tokenizer to tokenize text into tokens.
Feel free to change this to suit your need. """
line = re.sub('<u>', '', line)
line = re.sub('</u>', '', line)
line = re.sub('\[', '', line)
line = re.sub('\]', '', line)
words = []
_WORD_SPLIT = re.compile("([.,!?\"'-<>:;)(])")
_DIGIT_RE = re.compile(r"\d")
for fragment in line.strip().lower().split():
for token in re.split(_WORD_SPLIT, fragment):
if not token:
continue
if normalize_digits:
token = re.sub(_DIGIT_RE, '#', token)
words.append(token)
return words
def build_vocab(filename, normalize_digits=True):
in_path = os.path.join(config.PROCESSED_PATH, filename)
out_path = os.path.join(config.PROCESSED_PATH, 'vocab.{}'.format(filename[-3:]))
vocab = {}
with open(in_path, 'r') as f:
for line in f.readlines():
for token in basic_tokenizer(line):
if not token in vocab:
vocab[token] = 0
vocab[token] += 1
sorted_vocab = sorted(vocab, key=vocab.get, reverse=True)
with open(out_path, 'w') as f:
f.write('<pad>' + '\n')
f.write('<unk>' + '\n')
f.write('<s>' + '\n')
f.write('<\s>' + '\n')
index = 4
for word in sorted_vocab:
if vocab[word] < config.THRESHOLD:
break
f.write(word + '\n')
index += 1
with open('config.py', 'a') as cf:
if filename[-3:] == 'enc':
cf.write('ENC_VOCAB = ' + str(index) + '\n')
else:
cf.write('DEC_VOCAB = ' + str(index) + '\n')
def load_vocab(vocab_path):
with open(vocab_path, 'r') as f:
words = f.read().splitlines()
return words, {words[i]: i for i in range(len(words))}
def sentence2id(vocab, line):
return [vocab.get(token, vocab['<unk>']) for token in basic_tokenizer(line)]
def token2id(data, mode):
""" Convert all the tokens in the data into their corresponding
index in the vocabulary. """
vocab_path = 'vocab.' + mode
in_path = data + '.' + mode
out_path = data + '_ids.' + mode
_, vocab = load_vocab(os.path.join(config.PROCESSED_PATH, vocab_path))
in_file = open(os.path.join(config.PROCESSED_PATH, in_path), 'r')
out_file = open(os.path.join(config.PROCESSED_PATH, out_path), 'w')
lines = in_file.read().splitlines()
for line in lines:
if mode == 'dec': # we only care about '<s>' and </s> in encoder
ids = [vocab['<s>']]
else:
ids = []
ids.extend(sentence2id(vocab, line))
# ids.extend([vocab.get(token, vocab['<unk>']) for token in basic_tokenizer(line)])
if mode == 'dec':
ids.append(vocab['<\s>'])
out_file.write(' '.join(str(id_) for id_ in ids) + '\n')
def prepare_raw_data():
print('Preparing raw data into train set and test set ...')
id2line = get_lines()
convos = get_convos()
questions, answers = question_answers(id2line, convos)
prepare_dataset(questions, answers)
def process_data():
print('Preparing data to be model-ready ...')
build_vocab('train.enc')
build_vocab('train.dec')
token2id('train', 'enc')
token2id('train', 'dec')
token2id('test', 'enc')
token2id('test', 'dec')
def load_data(enc_filename, dec_filename, max_training_size=None):
encode_file = open(os.path.join(config.PROCESSED_PATH, enc_filename), 'r')
decode_file = open(os.path.join(config.PROCESSED_PATH, dec_filename), 'r')
encode, decode = encode_file.readline(), decode_file.readline()
data_buckets = [[] for _ in config.BUCKETS]
i = 0
while encode and decode:
if (i + 1) % 10000 == 0:
print("Bucketing conversation number", i)
encode_ids = [int(id_) for id_ in encode.split()]
decode_ids = [int(id_) for id_ in decode.split()]
for bucket_id, (encode_max_size, decode_max_size) in enumerate(config.BUCKETS):
if len(encode_ids) <= encode_max_size and len(decode_ids) <= decode_max_size:
data_buckets[bucket_id].append([encode_ids, decode_ids])
break
encode, decode = encode_file.readline(), decode_file.readline()
i += 1
return data_buckets
def _pad_input(input_, size):
return input_ + [config.PAD_ID] * (size - len(input_))
def _reshape_batch(inputs, size, batch_size):
""" Create batch-major inputs. Batch inputs are just re-indexed inputs
"""
batch_inputs = []
for length_id in range(size):
batch_inputs.append(np.array([inputs[batch_id][length_id]
for batch_id in range(batch_size)], dtype=np.int32))
return batch_inputs
def get_batch(data_bucket, bucket_id, batch_size=1):
""" Return one batch to feed into the model """
# only pad to the max length of the bucket
encoder_size, decoder_size = config.BUCKETS[bucket_id]
encoder_inputs, decoder_inputs = [], []
for _ in range(batch_size):
encoder_input, decoder_input = random.choice(data_bucket)
# pad both encoder and decoder, reverse the encoder
encoder_inputs.append(list(reversed(_pad_input(encoder_input, encoder_size))))
decoder_inputs.append(_pad_input(decoder_input, decoder_size))
# now we create batch-major vectors from the data selected above.
batch_encoder_inputs = _reshape_batch(encoder_inputs, encoder_size, batch_size)
batch_decoder_inputs = _reshape_batch(decoder_inputs, decoder_size, batch_size)
# create decoder_masks to be 0 for decoders that are padding.
batch_masks = []
for length_id in range(decoder_size):
batch_mask = np.ones(batch_size, dtype=np.float32)
for batch_id in range(batch_size):
# we set mask to 0 if the corresponding target is a PAD symbol.
# the corresponding decoder is decoder_input shifted by 1 forward.
if length_id < decoder_size - 1:
target = decoder_inputs[batch_id][length_id + 1]
if length_id == decoder_size - 1 or target == config.PAD_ID:
batch_mask[batch_id] = 0.0
batch_masks.append(batch_mask)
return batch_encoder_inputs, batch_decoder_inputs, batch_masks
if __name__ == '__main__':
prepare_raw_data()
process_data()