Skip to content

Latest commit

 

History

History
 
 

nnkit

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

nnkit

nnkit is collection of neural networks tools for our nncc project. This tool is mostly used for testing.

Purpose

For testing, we need to have

  • a tool to run existing framework such as Tensorflow for expected tensor result --- (1)
  • a tool to run our implementation for actual tensor result --- (2)

nnkit provides a flexible framework to get expected and actual result.

Design

Requirements to address:

  • Input
    • Same randomized input is used for both of (1) and (2)
    • Expect tensor layout (e.g., NHWC) could be different for (1) and (2)
  • Input and output format
    • Results of (1) and (2) have same file format and data format

For (1), nnkit designed to enable the following:

  • Input of nnkit is randomized and saved into a file in a specific format
  • Existing framework such as Tensorflow can run with input tensors that is properly translated
  • Result is written into a file in a specific format

For (2), nnkit designed to enable the following:

  • Data of nnkit in a file by (1) is used as input
  • Our implementation can run with input tensors that is properly translated
  • Result is written into a file in a specific format

nnkit-run

nnkit-run is a command line interface to interact with existing inference engines or compiled artifacts.

How nnkit-run works

nnkit-run first dynamically loads backend and multiple pre/post action specified by command-line. After loading backend and actions, nnkit-run requests backend to prepare itself. When backend is prepared, backend exposes its internal state to nnkit-run (as nnkit::TensorContext). nnkit-run takes this state, and passes it to registered pre action(s). Each action may read tensor(s) (e.g. dump the content into a file), or manipulate their value (e.g. fill random values). nnkit-run then invokes backend through run() method. After successful running the backend, post action(s) are called same like pre action(s) as a teardown step.

Backends

In 2019 there will be the following backends as of writing this document

  • Backends for the existing framework:

    • Caffe as libnnkit_caffe_backend.so
    • Tensorflow Lite as libnnkit_tflite_backend.so
    • Tensorflow as libnnkit_tf_backend.so
    • Onnx as libnnkit_onnx_backend.so
  • Backends for our implementation:

    • Moco Tensorflow (TBD)
    • Moco Onnx (TBD)

How to use

How to run inference with nnkit-run

To run nnkit-run, we need to provide a backend module and argument(s) if required and optional pre- or post- action module(s)

How to pass arguments

Syntax is --argument with value form. Existing arguments are as follows.

  • --backend [Backend module path]. Only one is needed.
  • --backend-arg [Backend argument]. Argument(s) for the backend.
  • --pre [Pre-Action module path]. Multiple Pre-Action can be given.
  • --pre-arg [Pre-Action argument]. Set argument(s) for the pre-action just before.
  • --post [Post-Action module path]. Multiple Post-Action can be given.
  • --post-arg [Post-Action argument]. Set argument(s) for the post-action just before.

For example,

nnkit-run \
--backend ./path/to/backend --backend-arg arg1 --backend-arg arg2 \
--pre ./path/to/preA --pre-arg arg1preA --pre-arg arg2preA \
--pre ./path/to/preB --pre-arg arg1preB --pre-arg arg2preB \
--post ./path/to/postA --post-arg arg1postA

This will run

  • backend ./path/to/backend with arguments arg1 arg2 with
    • pre-action ./path/to/preA with arguments arg1preA arg2preA,
    • pre-action ./path/to/preB with arguments arg1preB arg2preB and
    • post-action ./path/to/postA with an argument arg1postA

Example : Running with Tensorflow backend

To run Tensorflow backend, you need two parameters: model file in protobuf format (pb file) and input/output tensor information such as tensor name, data type, shape. Please refer to test.info files under moco/test/tf.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tf/backend/libnnkit_tf_backend.so \
--backend-arg inceptionv3_non_slim_2015.pb \
--backend-arg inceptionv3_non_slim_2015.info

Example: Running with Onnx backend

TBD

Example : Running with tflite backend

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite

Example: Running with Caffe backend

Running with caffe backend is similar to running with tflite, except that you need to provide prototxt file, caffemodel is not necessary, unless you want to use specific weights (weights are random if caffemodel is not provided and prototxt is not filled with specific weights):

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-caffe/backend/libnnkit_caffe_backend.so \
--backend-arg inception_v3.prototxt

Running with pre & post actions

The above command for the tflite backend shows nothing except nnapi error: unable to open library libneuralnetworks.so warning even though running correctly. The following command displays inferenced values.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--post ./compiler/nnkit/actions/builtin/libnnkit_show_action.so

The following command initializes input tensors with random values generated by RandomizeAction pre-action.

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--pre ./compiler/nnkit/actions/builtin/libnnkit_randomize_action.so \
--post ./compiler/nnkit/actions/builtin/libnnkit_show_action.so

Example: Dump HDF5

You can drop a HDF5 file of inputs and outputs with HDF5_export_action action module.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--pre ./compiler/nnkit/actions/builtin/libnnkit_randomize_action.so  \ # randomize first
--pre ./compiler/nnkit/actions/HDF5/libnnkit_HDF5_export_action.so \   # then drop input in HDF5 format
--pre-arg ./pre.hdf5 \
--post ./compiler/nnkit/actions/HDF5/libnnkit_HDF5_export_action.so \  # drop output in HDF5 format
--post-arg ./post.hdf5

This will drop pre.hdf5 and post.hdf5 files containing input and output tensor of inceptionv3_non_slim_2015.tflite model.

To do

  • nnkit backend for moco Tensorflow frontend
  • nnkit backend for moco Onnx frontend
  • nnkit backend for Onnx frontend