forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·476 lines (420 loc) · 16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#!/usr/bin/env python
import importlib
import json
import os
from pathlib import Path
import re
import sys
import typer
from typing import Optional
import uuid
import yaml
import ray
from ray.air.integrations.wandb import WandbLoggerCallback
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.common import CLIArguments as cli
from ray.rllib.common import FrameworkEnum, SupportedFileType
from ray.rllib.common import _download_example_file, _get_file_type
from ray.train.constants import _DEPRECATED_VALUE
from ray.tune.resources import resources_to_json, json_to_resources
from ray.tune.tune import run_experiments
from ray.tune.schedulers import create_scheduler
from ray.util.annotations import DeveloperAPI, PublicAPI
def _import_backends():
"""Try to import both backends for flag checking/warnings."""
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
# Create the "train" Typer app
train_app = typer.Typer()
def _patch_path(path: str):
"""
Patch a path to be relative to the current working directory.
Args:
path: relative input path.
Returns: Patched path.
"""
# This script runs in the ray/rllib dir.
rllib_dir = Path(__file__).parent
if isinstance(path, list):
return [_patch_path(i) for i in path]
elif isinstance(path, dict):
return {_patch_path(k): _patch_path(v) for k, v in path.items()}
elif isinstance(path, str):
if os.path.exists(path):
return path
else:
abs_path = str(rllib_dir.absolute().joinpath(path))
return abs_path if os.path.exists(abs_path) else path
else:
return path
@PublicAPI(stability="beta")
def load_experiments_from_file(
config_file: str,
file_type: SupportedFileType,
stop: Optional[str] = None,
checkpoint_config: Optional[dict] = None,
) -> dict:
"""Load experiments from a file. Supports YAML and Python files.
If you want to use a Python file, it has to have a 'config' variable
that is an AlgorithmConfig object and - optionally - a `stop` variable defining
the stop criteria.
Args:
config_file: The yaml or python file to be used as experiment definition.
Must only contain exactly one experiment.
file_type: One value of the `SupportedFileType` enum (yaml or python).
stop: An optional stop json string, only used if file_type is python.
If None (and file_type is python), will try to extract stop information
from a defined `stop` variable in the python file, otherwise, will use {}.
checkpoint_config: An optional checkpoint config to add to the returned
experiments dict.
Returns:
The experiments dict ready to be passed into `tune.run_experiments()`.
"""
# Yaml file.
if file_type == SupportedFileType.yaml:
with open(config_file) as f:
experiments = yaml.safe_load(f)
if stop is not None and stop != "{}":
raise ValueError("`stop` criteria only supported for python files.")
# Make sure yaml experiments are always old API stack.
for experiment in experiments.values():
experiment["config"]["enable_rl_module_and_learner"] = False
experiment["config"]["enable_env_runner_and_connector_v2"] = False
# Python file case (ensured by file type enum)
else:
module_name = os.path.basename(config_file).replace(".py", "")
spec = importlib.util.spec_from_file_location(module_name, config_file)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
if not hasattr(module, "config"):
raise ValueError(
"Your Python file must contain a 'config' variable "
"that is an AlgorithmConfig object."
)
algo_config = getattr(module, "config")
if stop is None:
stop = getattr(module, "stop", {})
else:
stop = json.loads(stop)
# Note: we do this gymnastics to support the old format that
# "_run_rllib_experiments" expects. Ideally, we'd just build the config and
# run the algo.
config = algo_config.to_dict()
experiments = {
f"default_{uuid.uuid4().hex}": {
"run": algo_config.algo_class,
"env": config.get("env"),
"config": config,
"stop": stop,
}
}
for key, val in experiments.items():
experiments[key]["checkpoint_config"] = checkpoint_config or {}
return experiments
@DeveloperAPI
@train_app.command()
def file(
# File-based arguments.
config_file: str = cli.ConfigFile,
# stopping conditions
stop: Optional[str] = cli.Stop,
# Environment override.
env: Optional[str] = cli.Env,
# Checkpointing
checkpoint_freq: int = cli.CheckpointFreq,
checkpoint_at_end: bool = cli.CheckpointAtEnd,
keep_checkpoints_num: int = cli.KeepCheckpointsNum,
checkpoint_score_attr: str = cli.CheckpointScoreAttr,
# Additional config arguments used for overriding.
v: bool = cli.V,
vv: bool = cli.VV,
framework: FrameworkEnum = cli.Framework,
trace: bool = cli.Trace,
# WandB options.
wandb_key: Optional[str] = cli.WandBKey,
wandb_project: Optional[str] = cli.WandBProject,
wandb_run_name: Optional[str] = cli.WandBRunName,
# Ray cluster options.
local_mode: bool = cli.LocalMode,
ray_address: Optional[str] = cli.RayAddress,
ray_ui: bool = cli.RayUi,
ray_num_cpus: Optional[int] = cli.RayNumCpus,
ray_num_gpus: Optional[int] = cli.RayNumGpus,
ray_num_nodes: Optional[int] = cli.RayNumNodes,
ray_object_store_memory: Optional[int] = cli.RayObjectStoreMemory,
# Ray scheduling options.
resume: bool = cli.Resume,
scheduler: Optional[str] = cli.Scheduler,
scheduler_config: str = cli.SchedulerConfig,
):
"""Train a reinforcement learning agent from file.
The file argument is required to run this command.\n\n
Grid search example with the RLlib CLI:\n
rllib train file tuned_examples/ppo/cartpole-ppo.yaml\n\n
You can also run an example from a URL with the file content:\n
rllib train file https://raw.githubusercontent.com/ray-project/ray/\
master/rllib/tuned_examples/ppo/cartpole-ppo.yaml
"""
# Attempt to download the file if it's not found locally.
config_file, temp_file = _download_example_file(
example_file=config_file, base_url=None
)
_import_backends()
framework = framework.value if framework else None
checkpoint_config = {
"checkpoint_frequency": checkpoint_freq,
"checkpoint_at_end": checkpoint_at_end,
"num_to_keep": keep_checkpoints_num,
"checkpoint_score_attribute": checkpoint_score_attr,
}
file_type = _get_file_type(config_file)
experiments = load_experiments_from_file(
config_file, file_type, stop, checkpoint_config
)
exp_name = list(experiments.keys())[0]
experiment = experiments[exp_name]
algo = experiment["run"]
# Override the env from the config by the value given on the command line.
if env is not None:
experiment["env"] = env
# WandB logging support.
callbacks = None
if wandb_key is not None:
project = wandb_project or (
algo.lower() + "-" + re.sub("\\W+", "-", experiment["env"].lower())
if file_type == SupportedFileType.python
else exp_name
)
callbacks = [
WandbLoggerCallback(
api_key=wandb_key,
project=project,
**({"name": wandb_run_name} if wandb_run_name is not None else {}),
)
]
# if we had to download the config file, remove the temp file.
if temp_file:
temp_file.close()
_run_rllib_experiments(
experiments=experiments,
v=v,
vv=vv,
framework=framework,
trace=trace,
ray_num_nodes=ray_num_nodes,
ray_num_cpus=ray_num_cpus,
ray_num_gpus=ray_num_gpus,
ray_object_store_memory=ray_object_store_memory,
ray_ui=ray_ui,
ray_address=ray_address,
local_mode=local_mode,
resume=resume,
scheduler=scheduler,
scheduler_config=scheduler_config,
algo=algo,
callbacks=callbacks,
)
@DeveloperAPI
@train_app.callback(invoke_without_command=True)
def run(
# Context object for subcommands
ctx: typer.Context,
# Config-based arguments.
algo: str = cli.Algo,
env: str = cli.Env,
config: str = cli.Config,
stop: str = cli.Stop,
experiment_name: str = cli.ExperimentName,
num_samples: int = cli.NumSamples,
checkpoint_freq: int = cli.CheckpointFreq,
checkpoint_at_end: bool = cli.CheckpointAtEnd,
storage_path: str = cli.StoragePath,
restore: str = cli.Restore,
resources_per_trial: str = cli.ResourcesPerTrial,
keep_checkpoints_num: int = cli.KeepCheckpointsNum,
checkpoint_score_attr: str = cli.CheckpointScoreAttr,
# Additional config arguments used for overriding.
v: bool = cli.V,
vv: bool = cli.VV,
framework: FrameworkEnum = cli.Framework,
trace: bool = cli.Trace,
# Ray cluster options.
local_mode: bool = cli.LocalMode,
ray_address: str = cli.RayAddress,
ray_ui: bool = cli.RayUi,
ray_num_cpus: int = cli.RayNumCpus,
ray_num_gpus: int = cli.RayNumGpus,
ray_num_nodes: int = cli.RayNumNodes,
ray_object_store_memory: int = cli.RayObjectStoreMemory,
# Ray scheduling options.
resume: bool = cli.Resume,
scheduler: str = cli.Scheduler,
scheduler_config: str = cli.SchedulerConfig,
# TODO(arturn): [Deprecated] Remove in 2.11.
local_dir: str = cli.LocalDir,
upload_dir: str = cli.UploadDir,
):
"""Train a reinforcement learning agent from command line options.
The options --env and --algo are required to run this command.
Training example via RLlib CLI:\n
rllib train --algo DQN --env CartPole-v1\n\n
"""
# If no subcommand is specified, simply run the following lines as the
# "rllib train" main command.
if ctx.invoked_subcommand is None:
# we only check for backends when actually running the command. otherwise the
# start-up time is too slow.
_import_backends()
framework = framework.value if framework else None
config = json.loads(config)
resources_per_trial = json_to_resources(resources_per_trial)
if local_dir != _DEPRECATED_VALUE:
raise DeprecationWarning(
"`local_dir` is deprecated. Please use `storage_path` instead."
)
if upload_dir != _DEPRECATED_VALUE:
raise DeprecationWarning(
"`upload_dir` is deprecated. Please use `storage_path` instead."
)
# Load a single experiment from configuration
experiments = {
experiment_name: { # i.e. log to ~/ray_results/default
"run": algo,
"checkpoint_config": {
"checkpoint_frequency": checkpoint_freq,
"checkpoint_at_end": checkpoint_at_end,
"num_to_keep": keep_checkpoints_num,
"checkpoint_score_attribute": checkpoint_score_attr,
},
"storage_path": storage_path,
"resources_per_trial": (
resources_per_trial and resources_to_json(resources_per_trial)
),
"stop": json.loads(stop),
"config": dict(config, env=env),
"restore": restore,
"num_samples": num_samples,
}
}
_run_rllib_experiments(
experiments=experiments,
v=v,
vv=vv,
framework=framework,
trace=trace,
ray_num_nodes=ray_num_nodes,
ray_num_cpus=ray_num_cpus,
ray_num_gpus=ray_num_gpus,
ray_object_store_memory=ray_object_store_memory,
ray_ui=ray_ui,
ray_address=ray_address,
local_mode=local_mode,
resume=resume,
scheduler=scheduler,
scheduler_config=scheduler_config,
algo=algo,
)
def _run_rllib_experiments(
experiments: dict,
v: cli.V,
vv: cli.VV,
framework: str,
trace: cli.Trace,
ray_num_nodes: cli.RayNumNodes,
ray_num_cpus: cli.RayNumCpus,
ray_num_gpus: cli.RayNumGpus,
ray_object_store_memory: cli.RayObjectStoreMemory,
ray_ui: cli.RayUi,
ray_address: cli.RayAddress,
local_mode: cli.LocalMode,
resume: cli.Resume,
scheduler: cli.Scheduler,
scheduler_config: cli.SchedulerConfig,
algo: cli.Algo,
callbacks=None,
):
"""Main training function for the RLlib CLI, whether you've loaded your
experiments from a config file or from command line options."""
# Override experiment data with command line arguments.
verbose = 1
for exp in experiments.values():
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
# NOTE: Some of our yaml files don't have a `config` section.
input_ = exp.get("config", {}).get("input")
if input_ and input_ != "sampler":
exp["config"]["input"] = _patch_path(input_)
if not exp.get("env") and not exp.get("config", {}).get("env"):
raise ValueError(
"You either need to provide an --env argument (e.g. 'CartPole-v1') "
"or pass an `env` key with a valid environment to your `config`"
"argument."
)
elif framework is not None:
exp["config"]["framework"] = framework
if trace:
if exp["config"]["framework"] not in ["tf2"]:
raise ValueError("Must enable framework=tf2 to enable eager tracing.")
exp["config"]["eager_tracing"] = True
if v:
exp["config"]["log_level"] = "INFO"
verbose = 3 # Print details on trial result
if vv:
exp["config"]["log_level"] = "DEBUG"
verbose = 3 # Print details on trial result
# Initialize the Ray cluster with the specified options.
if ray_num_nodes:
# Import this only here so that train.py also works with
# older versions (and user doesn't use `--ray-num-nodes`).
from ray.cluster_utils import Cluster
cluster = Cluster()
for _ in range(ray_num_nodes):
cluster.add_node(
num_cpus=ray_num_cpus or 1,
num_gpus=ray_num_gpus or 0,
object_store_memory=ray_object_store_memory,
)
ray.init(address=cluster.address)
else:
ray.init(
include_dashboard=ray_ui,
address=ray_address,
object_store_memory=ray_object_store_memory,
num_cpus=ray_num_cpus,
num_gpus=ray_num_gpus,
local_mode=local_mode,
)
# Run the Tune experiment and return the trials.
scheduler_config = json.loads(scheduler_config)
trials = run_experiments(
experiments,
scheduler=create_scheduler(scheduler, **scheduler_config),
resume=resume,
verbose=verbose,
concurrent=True,
callbacks=callbacks,
)
ray.shutdown()
checkpoints = []
for trial in trials:
if trial.checkpoint:
checkpoints.append(trial.checkpoint)
if checkpoints:
from rich import print
from rich.panel import Panel
print("\nYour training finished.")
print("Best available checkpoint for each trial:")
for cp in checkpoints:
print(f" {cp.path}")
print(
"\nYou can now evaluate your trained algorithm from any "
"checkpoint, e.g. by running:"
)
print(Panel(f"[green] rllib evaluate {checkpoints[0].path} --algo {algo}"))
@DeveloperAPI
def main():
"""Run the CLI."""
train_app()
if __name__ == "__main__":
main()