Skip to content

Latest commit

 

History

History
 
 

NLP

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Graph_in_NLP

Summary

In this work, Fused Gromov-Wasserstein distance is applied to improve the performance of different NLP tasks, such as Machine Translation, abstractive summarization, etc

Gromov-Wasserstein distance only or Wasserstein distance only also tested, the machine translation task on EN-VI dataset simply shows FGWD is better than both W or GW.

Modle EN-VI uncased EN-VI cased EN-DE uncased EN-DE cased
transformer base 29.25 28.46 25.60 25.12
transformer + W 29.49 28.68 TBD TBD
transformer + GW 28.65 28.34 TBD TBD
transformer + FGW 29.92 29.09 26.05 25.54

Brief Introduction

Wasserstein distance: alt text

Gromov-Wasserstein distance: alt text

Fused Gromov-Wasserstein distance: alt text