-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathctt_model.py
29 lines (25 loc) · 1.56 KB
/
ctt_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import tensorflow as tf
from tensorflow.layers import *
import time
def CTT(Mc_placeholder, Mt_placeholder, train_mode):
start_time = time.time()
input = tf.concat([Mc_placeholder, Mt_placeholder], 3)
n = conv2d(input, 64, 3, padding='same', activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=0.02))
for i in range(16):
nn = conv2d(n, 64, 3, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.02), bias_initializer=None)
nn = batch_normalization(nn, gamma_initializer =tf.random_normal_initializer(1., 0.02), training = train_mode)
nn = tf.nn.relu(nn)
nn = conv2d(nn, 64, 3, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.02), bias_initializer=None)
nn = batch_normalization(nn, gamma_initializer =tf.random_normal_initializer(1., 0.02),training = train_mode)
nn = tf.add(n, nn)
n = nn
n = conv2d(n, 64, 3, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.02), bias_initializer=None)
n = batch_normalization(n, gamma_initializer =tf.random_normal_initializer(1., 0.02),training = train_mode)
n = tf.add(n, M_c)
for i in range(2):
n = conv2d(n, 256, 3, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.02))
n = tf.depth_to_space(n,2)
n = tf.nn.relu(n)
n = conv2d(n, 3, 1, padding='same', activation=tf.nn.tanh, kernel_initializer=tf.random_normal_initializer(stddev=0.02))
print(("build model finished: %ds" % (time.time() - start_time)))
return n