forked from jdepoix/spectre-real-time-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainig.py
60 lines (41 loc) · 1.69 KB
/
trainig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import sys
import json
from random import shuffle
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import numpy
class SpectreDetectionNeuralNetworkTrainer():
def __init__(self, dataset_path, save_model_path):
self._dataset_path = dataset_path
self._save_model_path = save_model_path
def _load_dataset(self):
with open(self._dataset_path) as dataset_file:
dataset = json.loads(dataset_file.read())
return dataset
def _preprocess_dataset(self):
data = []
labels = []
for process_data in self._load_dataset()['processes'].values():
data += process_data['data']
labels += [process_data['label']] * len(process_data['data'])
data = StandardScaler().fit_transform(data)
shuffled_data = []
shuffled_labels = []
indexes = list(range(len(data)))
shuffle(indexes)
for index in indexes:
shuffled_data.append(data[index])
shuffled_labels.append(labels[index])
return shuffled_data, shuffled_labels
def train(self):
data, labels = self._preprocess_dataset()
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=3))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy'])
model.fit(numpy.array(data), numpy.array(labels), validation_split=.1, epochs=1000)
model.save(self._save_model_path)
if __name__ == '__main__':
SpectreDetectionNeuralNetworkTrainer(sys.argv[1], sys.argv[2]).train()