-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
106 lines (79 loc) · 2.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import torch
from pycocotools.coco import COCO
train_ann_file = '/home/user/Data/coco2014/annotations/instances_train2014.json'
coco = COCO(train_ann_file)
cats = coco.loadCats(coco.getCatIds())
class Category:
def __init__(self, class_index, super_category, cat_id, nm):
self.class_id = class_index
self.supercategory = super_category
self.category_id = cat_id
self.class_name = nm
categories = []
for idx, item in enumerate(cats):
supercategory = item['supercategory']
category_id = item['id']
name = item['name']
category = Category(idx, supercategory, category_id, name)
categories.append(category)
def get_class_id_from_category_id(cat_id):
for cat in categories:
if cat.category_id == cat_id:
return cat.class_id
else:
continue
def get_category_id_from_class_id(class_id):
for cat in categories:
if cat.class_id == class_id:
return cat.category_id
else:
continue
def get_class_name_from_category_id(cat_id):
for cat in categories:
if cat.category_id == cat_id:
return cat.class_name
else:
continue
def get_class_name_from_class_id(class_id):
return categories[class_id].class_name
def get_class_id_from_class_name(class_name):
for cat in categories:
if cat.class_name == class_name:
return cat.class_id
else:
continue
def get_classes_from_labels(labels):
class_names = []
label_size = labels.shape[0]
for label in range(label_size):
if int(labels[label]) == 1:
class_name = get_class_name_from_class_id(label)
class_names.append(class_name)
return class_names
def get_class_id_from_objects(objects):
class_ids = []
for obj in objects:
class_id = get_class_id_from_class_name(obj)
class_ids.append(class_id)
return class_ids
def prepare_image(np_img):
np_img = np.float32(np_img)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# convert to [C, H, W] from [H, W, C]
np_img = np_img.transpose(2, 0, 1)
channels, width, height = np_img.shape
for channel in range(channels):
np_img[channel] /= 255
np_img[channel] -= mean[channel]
np_img[channel] /= std[channel]
return np_img
def tensor_to_image(img_tensor):
img = img_tensor.cpu().numpy().transpose(1, 2, 0)
img = img.astype('float32')
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
img = img * std + mean
# img = np.clip(img, 0, 1)
return img