forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 8
/
tree.c
3535 lines (3191 loc) · 110 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2008
*
* Authors: Dipankar Sarma <[email protected]>
* Manfred Spraul <[email protected]>
* Paul E. McKenney <[email protected]> Hierarchical version
*
* Based on the original work by Paul McKenney <[email protected]>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/nmi.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
#include <linux/wait.h>
#include <linux/kthread.h>
#include <linux/prefetch.h>
#include <linux/delay.h>
#include <linux/stop_machine.h>
#include <linux/random.h>
#include <linux/ftrace_event.h>
#include <linux/suspend.h>
#include "tree.h"
#include "rcu.h"
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."
/* Data structures. */
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
/*
* In order to export the rcu_state name to the tracing tools, it
* needs to be added in the __tracepoint_string section.
* This requires defining a separate variable tp_<sname>_varname
* that points to the string being used, and this will allow
* the tracing userspace tools to be able to decipher the string
* address to the matching string.
*/
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
static char sname##_varname[] = #sname; \
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
struct rcu_state sname##_state = { \
.level = { &sname##_state.node[0] }, \
.call = cr, \
.fqs_state = RCU_GP_IDLE, \
.gpnum = 0UL - 300UL, \
.completed = 0UL - 300UL, \
.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
.orphan_nxttail = &sname##_state.orphan_nxtlist, \
.orphan_donetail = &sname##_state.orphan_donelist, \
.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
.name = sname##_varname, \
.abbr = sabbr, \
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
static struct rcu_state *rcu_state;
LIST_HEAD(rcu_struct_flavors);
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0444);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
NUM_RCU_LVL_0,
NUM_RCU_LVL_1,
NUM_RCU_LVL_2,
NUM_RCU_LVL_3,
NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
/*
* The rcu_scheduler_active variable transitions from zero to one just
* before the first task is spawned. So when this variable is zero, RCU
* can assume that there is but one task, allowing RCU to (for example)
* optimize synchronize_sched() to a simple barrier(). When this variable
* is one, RCU must actually do all the hard work required to detect real
* grace periods. This variable is also used to suppress boot-time false
* positives from lockdep-RCU error checking.
*/
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
/*
* The rcu_scheduler_fully_active variable transitions from zero to one
* during the early_initcall() processing, which is after the scheduler
* is capable of creating new tasks. So RCU processing (for example,
* creating tasks for RCU priority boosting) must be delayed until after
* rcu_scheduler_fully_active transitions from zero to one. We also
* currently delay invocation of any RCU callbacks until after this point.
*
* It might later prove better for people registering RCU callbacks during
* early boot to take responsibility for these callbacks, but one step at
* a time.
*/
static int rcu_scheduler_fully_active __read_mostly;
#ifdef CONFIG_RCU_BOOST
/*
* Control variables for per-CPU and per-rcu_node kthreads. These
* handle all flavors of RCU.
*/
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);
#endif /* #ifdef CONFIG_RCU_BOOST */
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
/*
* Track the rcutorture test sequence number and the update version
* number within a given test. The rcutorture_testseq is incremented
* on every rcutorture module load and unload, so has an odd value
* when a test is running. The rcutorture_vernum is set to zero
* when rcutorture starts and is incremented on each rcutorture update.
* These variables enable correlating rcutorture output with the
* RCU tracing information.
*/
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;
/*
* Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
* permit this function to be invoked without holding the root rcu_node
* structure's ->lock, but of course results can be subject to change.
*/
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}
/*
* Note a quiescent state. Because we do not need to know
* how many quiescent states passed, just if there was at least
* one since the start of the grace period, this just sets a flag.
* The caller must have disabled preemption.
*/
void rcu_sched_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
if (rdp->passed_quiesce == 0)
trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
rdp->passed_quiesce = 1;
}
void rcu_bh_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
if (rdp->passed_quiesce == 0)
trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
rdp->passed_quiesce = 1;
}
/*
* Note a context switch. This is a quiescent state for RCU-sched,
* and requires special handling for preemptible RCU.
* The caller must have disabled preemption.
*/
void rcu_note_context_switch(int cpu)
{
trace_rcu_utilization(TPS("Start context switch"));
rcu_sched_qs(cpu);
rcu_preempt_note_context_switch(cpu);
trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};
static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000; /* If this many pending, ignore blimit. */
static long qlowmark = 100; /* Once only this many pending, use blimit. */
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
struct rcu_data *rdp);
static void force_qs_rnp(struct rcu_state *rsp,
int (*f)(struct rcu_data *rsp, bool *isidle,
unsigned long *maxj),
bool *isidle, unsigned long *maxj);
static void force_quiescent_state(struct rcu_state *rsp);
static int rcu_pending(int cpu);
/*
* Return the number of RCU-sched batches processed thus far for debug & stats.
*/
long rcu_batches_completed_sched(void)
{
return rcu_sched_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
/*
* Return the number of RCU BH batches processed thus far for debug & stats.
*/
long rcu_batches_completed_bh(void)
{
return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
/*
* Force a quiescent state for RCU BH.
*/
void rcu_bh_force_quiescent_state(void)
{
force_quiescent_state(&rcu_bh_state);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
/*
* Record the number of times rcutorture tests have been initiated and
* terminated. This information allows the debugfs tracing stats to be
* correlated to the rcutorture messages, even when the rcutorture module
* is being repeatedly loaded and unloaded. In other words, we cannot
* store this state in rcutorture itself.
*/
void rcutorture_record_test_transition(void)
{
rcutorture_testseq++;
rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
/*
* Record the number of writer passes through the current rcutorture test.
* This is also used to correlate debugfs tracing stats with the rcutorture
* messages.
*/
void rcutorture_record_progress(unsigned long vernum)
{
rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);
/*
* Force a quiescent state for RCU-sched.
*/
void rcu_sched_force_quiescent_state(void)
{
force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
/*
* Does the CPU have callbacks ready to be invoked?
*/
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
rdp->nxttail[RCU_DONE_TAIL] != NULL;
}
/*
* Does the current CPU require a not-yet-started grace period?
* The caller must have disabled interrupts to prevent races with
* normal callback registry.
*/
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
int i;
if (rcu_gp_in_progress(rsp))
return 0; /* No, a grace period is already in progress. */
if (rcu_nocb_needs_gp(rsp))
return 1; /* Yes, a no-CBs CPU needs one. */
if (!rdp->nxttail[RCU_NEXT_TAIL])
return 0; /* No, this is a no-CBs (or offline) CPU. */
if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
return 1; /* Yes, this CPU has newly registered callbacks. */
for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
rdp->nxtcompleted[i]))
return 1; /* Yes, CBs for future grace period. */
return 0; /* No grace period needed. */
}
/*
* Return the root node of the specified rcu_state structure.
*/
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
return &rsp->node[0];
}
/*
* rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
*
* If the new value of the ->dynticks_nesting counter now is zero,
* we really have entered idle, and must do the appropriate accounting.
* The caller must have disabled interrupts.
*/
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
bool user)
{
struct rcu_state *rsp;
struct rcu_data *rdp;
trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
if (!user && !is_idle_task(current)) {
struct task_struct *idle __maybe_unused =
idle_task(smp_processor_id());
trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
ftrace_dump(DUMP_ORIG);
WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
current->pid, current->comm,
idle->pid, idle->comm); /* must be idle task! */
}
for_each_rcu_flavor(rsp) {
rdp = this_cpu_ptr(rsp->rda);
do_nocb_deferred_wakeup(rdp);
}
rcu_prepare_for_idle(smp_processor_id());
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
/*
* It is illegal to enter an extended quiescent state while
* in an RCU read-side critical section.
*/
rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
"Illegal idle entry in RCU read-side critical section.");
rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
"Illegal idle entry in RCU-bh read-side critical section.");
rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
"Illegal idle entry in RCU-sched read-side critical section.");
}
/*
* Enter an RCU extended quiescent state, which can be either the
* idle loop or adaptive-tickless usermode execution.
*/
static void rcu_eqs_enter(bool user)
{
long long oldval;
struct rcu_dynticks *rdtp;
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
rdtp->dynticks_nesting = 0;
rcu_eqs_enter_common(rdtp, oldval, user);
} else {
rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
}
}
/**
* rcu_idle_enter - inform RCU that current CPU is entering idle
*
* Enter idle mode, in other words, -leave- the mode in which RCU
* read-side critical sections can occur. (Though RCU read-side
* critical sections can occur in irq handlers in idle, a possibility
* handled by irq_enter() and irq_exit().)
*
* We crowbar the ->dynticks_nesting field to zero to allow for
* the possibility of usermode upcalls having messed up our count
* of interrupt nesting level during the prior busy period.
*/
void rcu_idle_enter(void)
{
unsigned long flags;
local_irq_save(flags);
rcu_eqs_enter(false);
rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(rcu_idle_enter);
#ifdef CONFIG_RCU_USER_QS
/**
* rcu_user_enter - inform RCU that we are resuming userspace.
*
* Enter RCU idle mode right before resuming userspace. No use of RCU
* is permitted between this call and rcu_user_exit(). This way the
* CPU doesn't need to maintain the tick for RCU maintenance purposes
* when the CPU runs in userspace.
*/
void rcu_user_enter(void)
{
rcu_eqs_enter(1);
}
#endif /* CONFIG_RCU_USER_QS */
/**
* rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
*
* Exit from an interrupt handler, which might possibly result in entering
* idle mode, in other words, leaving the mode in which read-side critical
* sections can occur.
*
* This code assumes that the idle loop never does anything that might
* result in unbalanced calls to irq_enter() and irq_exit(). If your
* architecture violates this assumption, RCU will give you what you
* deserve, good and hard. But very infrequently and irreproducibly.
*
* Use things like work queues to work around this limitation.
*
* You have been warned.
*/
void rcu_irq_exit(void)
{
unsigned long flags;
long long oldval;
struct rcu_dynticks *rdtp;
local_irq_save(flags);
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
rdtp->dynticks_nesting--;
WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
if (rdtp->dynticks_nesting)
trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
else
rcu_eqs_enter_common(rdtp, oldval, true);
rcu_sysidle_enter(rdtp, 1);
local_irq_restore(flags);
}
/*
* rcu_eqs_exit_common - current CPU moving away from extended quiescent state
*
* If the new value of the ->dynticks_nesting counter was previously zero,
* we really have exited idle, and must do the appropriate accounting.
* The caller must have disabled interrupts.
*/
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
int user)
{
smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
rcu_cleanup_after_idle(smp_processor_id());
trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
if (!user && !is_idle_task(current)) {
struct task_struct *idle __maybe_unused =
idle_task(smp_processor_id());
trace_rcu_dyntick(TPS("Error on exit: not idle task"),
oldval, rdtp->dynticks_nesting);
ftrace_dump(DUMP_ORIG);
WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
current->pid, current->comm,
idle->pid, idle->comm); /* must be idle task! */
}
}
/*
* Exit an RCU extended quiescent state, which can be either the
* idle loop or adaptive-tickless usermode execution.
*/
static void rcu_eqs_exit(bool user)
{
struct rcu_dynticks *rdtp;
long long oldval;
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE(oldval < 0);
if (oldval & DYNTICK_TASK_NEST_MASK) {
rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
} else {
rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
rcu_eqs_exit_common(rdtp, oldval, user);
}
}
/**
* rcu_idle_exit - inform RCU that current CPU is leaving idle
*
* Exit idle mode, in other words, -enter- the mode in which RCU
* read-side critical sections can occur.
*
* We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
* allow for the possibility of usermode upcalls messing up our count
* of interrupt nesting level during the busy period that is just
* now starting.
*/
void rcu_idle_exit(void)
{
unsigned long flags;
local_irq_save(flags);
rcu_eqs_exit(false);
rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(rcu_idle_exit);
#ifdef CONFIG_RCU_USER_QS
/**
* rcu_user_exit - inform RCU that we are exiting userspace.
*
* Exit RCU idle mode while entering the kernel because it can
* run a RCU read side critical section anytime.
*/
void rcu_user_exit(void)
{
rcu_eqs_exit(1);
}
#endif /* CONFIG_RCU_USER_QS */
/**
* rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
*
* Enter an interrupt handler, which might possibly result in exiting
* idle mode, in other words, entering the mode in which read-side critical
* sections can occur.
*
* Note that the Linux kernel is fully capable of entering an interrupt
* handler that it never exits, for example when doing upcalls to
* user mode! This code assumes that the idle loop never does upcalls to
* user mode. If your architecture does do upcalls from the idle loop (or
* does anything else that results in unbalanced calls to the irq_enter()
* and irq_exit() functions), RCU will give you what you deserve, good
* and hard. But very infrequently and irreproducibly.
*
* Use things like work queues to work around this limitation.
*
* You have been warned.
*/
void rcu_irq_enter(void)
{
unsigned long flags;
struct rcu_dynticks *rdtp;
long long oldval;
local_irq_save(flags);
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
rdtp->dynticks_nesting++;
WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
if (oldval)
trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
else
rcu_eqs_exit_common(rdtp, oldval, true);
rcu_sysidle_exit(rdtp, 1);
local_irq_restore(flags);
}
/**
* rcu_nmi_enter - inform RCU of entry to NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is active.
*/
void rcu_nmi_enter(void)
{
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
if (rdtp->dynticks_nmi_nesting == 0 &&
(atomic_read(&rdtp->dynticks) & 0x1))
return;
rdtp->dynticks_nmi_nesting++;
smp_mb__before_atomic_inc(); /* Force delay from prior write. */
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
}
/**
* rcu_nmi_exit - inform RCU of exit from NMI context
*
* If the CPU was idle with dynamic ticks active, and there is no
* irq handler running, this updates rdtp->dynticks_nmi to let the
* RCU grace-period handling know that the CPU is no longer active.
*/
void rcu_nmi_exit(void)
{
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
if (rdtp->dynticks_nmi_nesting == 0 ||
--rdtp->dynticks_nmi_nesting != 0)
return;
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force delay to next write. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
}
/**
* __rcu_is_watching - are RCU read-side critical sections safe?
*
* Return true if RCU is watching the running CPU, which means that
* this CPU can safely enter RCU read-side critical sections. Unlike
* rcu_is_watching(), the caller of __rcu_is_watching() must have at
* least disabled preemption.
*/
bool notrace __rcu_is_watching(void)
{
return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}
/**
* rcu_is_watching - see if RCU thinks that the current CPU is idle
*
* If the current CPU is in its idle loop and is neither in an interrupt
* or NMI handler, return true.
*/
bool notrace rcu_is_watching(void)
{
int ret;
preempt_disable();
ret = __rcu_is_watching();
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(rcu_is_watching);
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
/*
* Is the current CPU online? Disable preemption to avoid false positives
* that could otherwise happen due to the current CPU number being sampled,
* this task being preempted, its old CPU being taken offline, resuming
* on some other CPU, then determining that its old CPU is now offline.
* It is OK to use RCU on an offline processor during initial boot, hence
* the check for rcu_scheduler_fully_active. Note also that it is OK
* for a CPU coming online to use RCU for one jiffy prior to marking itself
* online in the cpu_online_mask. Similarly, it is OK for a CPU going
* offline to continue to use RCU for one jiffy after marking itself
* offline in the cpu_online_mask. This leniency is necessary given the
* non-atomic nature of the online and offline processing, for example,
* the fact that a CPU enters the scheduler after completing the CPU_DYING
* notifiers.
*
* This is also why RCU internally marks CPUs online during the
* CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
*
* Disable checking if in an NMI handler because we cannot safely report
* errors from NMI handlers anyway.
*/
bool rcu_lockdep_current_cpu_online(void)
{
struct rcu_data *rdp;
struct rcu_node *rnp;
bool ret;
if (in_nmi())
return true;
preempt_disable();
rdp = this_cpu_ptr(&rcu_sched_data);
rnp = rdp->mynode;
ret = (rdp->grpmask & rnp->qsmaskinit) ||
!rcu_scheduler_fully_active;
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
/**
* rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
*
* If the current CPU is idle or running at a first-level (not nested)
* interrupt from idle, return true. The caller must have at least
* disabled preemption.
*/
static int rcu_is_cpu_rrupt_from_idle(void)
{
return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
}
/*
* Snapshot the specified CPU's dynticks counter so that we can later
* credit them with an implicit quiescent state. Return 1 if this CPU
* is in dynticks idle mode, which is an extended quiescent state.
*/
static int dyntick_save_progress_counter(struct rcu_data *rdp,
bool *isidle, unsigned long *maxj)
{
rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
rcu_sysidle_check_cpu(rdp, isidle, maxj);
return (rdp->dynticks_snap & 0x1) == 0;
}
/*
* This function really isn't for public consumption, but RCU is special in
* that context switches can allow the state machine to make progress.
*/
extern void resched_cpu(int cpu);
/*
* Return true if the specified CPU has passed through a quiescent
* state by virtue of being in or having passed through an dynticks
* idle state since the last call to dyntick_save_progress_counter()
* for this same CPU, or by virtue of having been offline.
*/
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
bool *isidle, unsigned long *maxj)
{
unsigned int curr;
unsigned int snap;
curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
snap = (unsigned int)rdp->dynticks_snap;
/*
* If the CPU passed through or entered a dynticks idle phase with
* no active irq/NMI handlers, then we can safely pretend that the CPU
* already acknowledged the request to pass through a quiescent
* state. Either way, that CPU cannot possibly be in an RCU
* read-side critical section that started before the beginning
* of the current RCU grace period.
*/
if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
rdp->dynticks_fqs++;
return 1;
}
/*
* Check for the CPU being offline, but only if the grace period
* is old enough. We don't need to worry about the CPU changing
* state: If we see it offline even once, it has been through a
* quiescent state.
*
* The reason for insisting that the grace period be at least
* one jiffy old is that CPUs that are not quite online and that
* have just gone offline can still execute RCU read-side critical
* sections.
*/
if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
return 0; /* Grace period is not old enough. */
barrier();
if (cpu_is_offline(rdp->cpu)) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
rdp->offline_fqs++;
return 1;
}
/*
* There is a possibility that a CPU in adaptive-ticks state
* might run in the kernel with the scheduling-clock tick disabled
* for an extended time period. Invoke rcu_kick_nohz_cpu() to
* force the CPU to restart the scheduling-clock tick in this
* CPU is in this state.
*/
rcu_kick_nohz_cpu(rdp->cpu);
/*
* Alternatively, the CPU might be running in the kernel
* for an extended period of time without a quiescent state.
* Attempt to force the CPU through the scheduler to gain the
* needed quiescent state, but only if the grace period has gone
* on for an uncommonly long time. If there are many stuck CPUs,
* we will beat on the first one until it gets unstuck, then move
* to the next. Only do this for the primary flavor of RCU.
*/
if (rdp->rsp == rcu_state &&
ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
rdp->rsp->jiffies_resched += 5;
resched_cpu(rdp->cpu);
}
return 0;
}
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
unsigned long j = jiffies;
unsigned long j1;
rsp->gp_start = j;
smp_wmb(); /* Record start time before stall time. */
j1 = rcu_jiffies_till_stall_check();
rsp->jiffies_stall = j + j1;
rsp->jiffies_resched = j + j1 / 2;
}
/*
* Dump stacks of all tasks running on stalled CPUs. This is a fallback
* for architectures that do not implement trigger_all_cpu_backtrace().
* The NMI-triggered stack traces are more accurate because they are
* printed by the target CPU.
*/
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
int cpu;
unsigned long flags;
struct rcu_node *rnp;
rcu_for_each_leaf_node(rsp, rnp) {
raw_spin_lock_irqsave(&rnp->lock, flags);
if (rnp->qsmask != 0) {
for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
if (rnp->qsmask & (1UL << cpu))
dump_cpu_task(rnp->grplo + cpu);
}
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
}
static void print_other_cpu_stall(struct rcu_state *rsp)
{
int cpu;
long delta;
unsigned long flags;
int ndetected = 0;
struct rcu_node *rnp = rcu_get_root(rsp);
long totqlen = 0;
/* Only let one CPU complain about others per time interval. */
raw_spin_lock_irqsave(&rnp->lock, flags);
delta = jiffies - rsp->jiffies_stall;
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/*
* OK, time to rat on our buddy...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
pr_err("INFO: %s detected stalls on CPUs/tasks:",
rsp->name);
print_cpu_stall_info_begin();
rcu_for_each_leaf_node(rsp, rnp) {
raw_spin_lock_irqsave(&rnp->lock, flags);
ndetected += rcu_print_task_stall(rnp);
if (rnp->qsmask != 0) {
for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
if (rnp->qsmask & (1UL << cpu)) {
print_cpu_stall_info(rsp,
rnp->grplo + cpu);
ndetected++;
}
}
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Now rat on any tasks that got kicked up to the root rcu_node
* due to CPU offlining.
*/
rnp = rcu_get_root(rsp);
raw_spin_lock_irqsave(&rnp->lock, flags);
ndetected += rcu_print_task_stall(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
print_cpu_stall_info_end();
for_each_possible_cpu(cpu)
totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
smp_processor_id(), (long)(jiffies - rsp->gp_start),
rsp->gpnum, rsp->completed, totqlen);
if (ndetected == 0)
pr_err("INFO: Stall ended before state dump start\n");
else if (!trigger_all_cpu_backtrace())
rcu_dump_cpu_stacks(rsp);
/* Complain about tasks blocking the grace period. */
rcu_print_detail_task_stall(rsp);
force_quiescent_state(rsp); /* Kick them all. */
}
/*
* This function really isn't for public consumption, but RCU is special in
* that context switches can allow the state machine to make progress.
*/
extern void resched_cpu(int cpu);
static void print_cpu_stall(struct rcu_state *rsp)
{
int cpu;
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
long totqlen = 0;
/*
* OK, time to rat on ourselves...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
pr_err("INFO: %s self-detected stall on CPU", rsp->name);
print_cpu_stall_info_begin();
print_cpu_stall_info(rsp, smp_processor_id());
print_cpu_stall_info_end();
for_each_possible_cpu(cpu)
totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
if (!trigger_all_cpu_backtrace())
dump_stack();
raw_spin_lock_irqsave(&rnp->lock, flags);
if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
rsp->jiffies_stall = jiffies +
3 * rcu_jiffies_till_stall_check() + 3;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/*
* Attempt to revive the RCU machinery by forcing a context switch.
*
* A context switch would normally allow the RCU state machine to make
* progress and it could be we're stuck in kernel space without context
* switches for an entirely unreasonable amount of time.
*/
resched_cpu(smp_processor_id());
}
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
unsigned long completed;
unsigned long gpnum;
unsigned long gps;
unsigned long j;