-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtestgen_png.py
executable file
·144 lines (130 loc) · 5.58 KB
/
testgen_png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
"""
This script generates test definitions for P3 Test Driver.
Usage: ./testgen.py | p3_test_driver -t - -c p3_test_driver.config.yaml
"""
import json
import sys
def add_test():
num_copies = 1 if cached else num_copies_uncached
# if num_copies == 1 and image_resize_factor == 1.0:
# data_dir_suffix = ''
# elif num_copies == 150 and image_resize_factor == 1.0:
# data_dir_suffix = '-150x'
# elif num_copies == 1 and image_resize_factor == 3.0:
# data_dir_suffix = '1729'
# else:
# raise Exception()
#
data_dir_suffix = '-png2'
fuse_decode_and_crop = False
data_dir_template = '/mnt/isilon%%d/data/imagenet-scratch/tfrecords' + data_dir_suffix
flush = not cached
t = dict(
test='simple',
record_as_test='tensorflow_cnn_benchmark',
max_test_attempts=2,
pre_commands=[
dict(key='tensorflow_benchmark_git_hash',
command_template='cd ../tensorflow-benchmarks && git rev-parse --short HEAD'),
dict(key='NVIDIA_TENSORFLOW_VERSION',
command_template='docker exec tf /bin/bash -c "echo \\$NVIDIA_TENSORFLOW_VERSION"'),
dict(key='TENSORFLOW_VERSION',
command_template='docker exec tf /bin/bash -c "echo \\$TENSORFLOW_VERSION"'),
],
command_template=[
'docker',
'exec',
'tf',
'./run_benchmark.py',
'--batch_group_size', '%d' % batch_group_size,
'--batch_size', '%d' % batch_size,
'--data_dir_template', data_dir_template,
'--data_dir_template_count', '%d' % data_dir_template_count,
'--datasets_prefetch_buffer_size', '%d' % datasets_prefetch_buffer_size,
'--datasets_num_private_threads', '%d' % datasets_num_private_threads,
'--flush', '%d' % flush,
'--fp16', '%d' % fp16,
'--fuse_decode_and_crop', '%d' % fuse_decode_and_crop,
'--isilon_host', '%(isilon_host)s',
'--model', model,
'--noop', '%d' % noop,
'--np', '%d' % np,
'--npernode', '%d' % npernode,
'--num_batches', '%d' % num_batches,
'--num_hosts', '%d' % num_hosts,
'--num_intra_threads', '%d' % num_intra_threads,
'--num_inter_threads', '%d' % num_inter_threads,
],
batch_group_size=batch_group_size,
batch_size=batch_size,
cached=cached,
data_dir_suffix=data_dir_suffix,
data_dir_template=data_dir_template,
data_dir_template_count=data_dir_template_count,
datasets_prefetch_buffer_size=datasets_prefetch_buffer_size,
datasets_num_private_threads=datasets_num_private_threads,
flush=flush,
fp16=fp16,
fuse_decode_and_crop=fuse_decode_and_crop,
image_format='PNG',
image_resize_factor=image_resize_factor,
isilon_flush=flush,
model=model,
np=np,
npernode=npernode,
num_batches=num_batches,
num_copies=num_copies,
num_hosts=num_hosts,
num_intra_threads=num_intra_threads,
num_inter_threads=num_inter_threads,
storage_type=storage_type,
)
test_list.append(t)
test_list = []
num_copies_uncached = 150
image_resize_factor = 1.0
fp16 = True
noop = False
storage_type = 'isilon'
for repeat in range(1):
for cached in [False]:
for model in ['trivial','resnet50', 'vgg16', 'resnet152', 'inception3', 'inception4']:
for batch_group_size in [10]:
if model == 'vgg16':
batch_sizes = [192]
else:
batch_sizes = [256]
for batch_size in batch_sizes:
for data_dir_template_count in [1 if cached else 16]:
for datasets_prefetch_buffer_size in [20]:
for datasets_num_private_threads in [11]:
for num_batches in [1000]:
for num_hosts in [3,2,1]:
for npernode in [16,12,8,4]:
np = num_hosts * npernode
for num_inter_threads in [40]:
for num_intra_threads in [1]:
add_test()
# Full test suite
for repeat in range(0):
for cached in [False, True]:
for model in ['resnet50', 'vgg16', 'resnet152', 'inception3', 'inception4']:
for batch_group_size in [10]:
if model == 'vgg16':
batch_sizes = [192]
else:
batch_sizes = [256]
for batch_size in batch_sizes:
for data_dir_template_count in [1 if cached else 16]:
for datasets_prefetch_buffer_size in [40]:
for datasets_num_private_threads in [4]:
for num_batches in [1000]:
for num_hosts in [3, 2, 1]:
for npernode in [16]:
np = num_hosts * npernode
for num_intra_threads in [1]:
for num_inter_threads in [40]:
add_test()
print(json.dumps(test_list, sort_keys=True, indent=4, ensure_ascii=False))
print('Number of tests generated: %d' % len(test_list), file=sys.stderr)