forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RowWiseSparseAdagradFused.cc
580 lines (504 loc) · 20.3 KB
/
RowWiseSparseAdagradFused.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include "fbgemm/FbgemmEmbedding.h"
#include <asmjit/asmjit.h>
#include <cpuinfo.h>
#include <cassert>
#include <iostream>
#include <mutex>
#include "./CodeCache.h"
#include "./MaskAvx2.h"
#include "./RefImplementations.h"
#include "fbgemm/Utils.h"
using namespace std;
namespace fbgemm {
namespace {
namespace x86 = asmjit::x86;
template <typename indxType = int64_t>
class ReturnFunctionSignature {
public:
using jit_sparse_adagrad_kernel = bool (*)(
int64_t output_size,
int64_t index_size,
int64_t data_size, // number of rows in w
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const indxType* indices, // indices of each row
const int* lengths,
float epsilon,
float lr,
const int* mask_avx2);
};
template <typename indxType = int64_t, inst_set_t instSet = inst_set_t::avx2>
class GenRowWiseSparseAdagradFused {
public:
GenRowWiseSparseAdagradFused() {}
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
getOrCreate(int block_size, int prefetch);
private:
static asmjit::JitRuntime& runtime() {
static asmjit::JitRuntime rt; // JIT Runtime for asmjit
return rt;
}
static mutex rtMutex_; /// Controll access to runtime;
// The hash depends on embedding dimension (block size), and prefetch distance
static CodeCache<
tuple<int, int>,
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel>
codeCache_; ///< JIT Code Cache for reuse.
}; // class GenRowWiseSparseAdagradFused
template <typename indxType, inst_set_t instSet>
mutex GenRowWiseSparseAdagradFused<indxType, instSet>::rtMutex_;
template <typename indxType, inst_set_t instSet>
CodeCache<
tuple<int, int>,
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel>
GenRowWiseSparseAdagradFused<indxType, instSet>::codeCache_;
template <typename indxType, inst_set_t instSet>
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
GenRowWiseSparseAdagradFused<indxType, instSet>::getOrCreate(
int block_size,
int prefetch) {
tuple<int, int> kernelSig = make_tuple(block_size, prefetch);
return codeCache_.getOrCreate(
kernelSig,
[&]() ->
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel {
asmjit::CodeHolder code;
code.init(runtime().codeInfo());
x86::Assembler assembler(&code);
x86::Emitter* a = assembler.as<x86::Emitter>();
bool areIndices64b = is_same<indxType, int64_t>::value;
#if defined(FBGEMM_LOG_CODE)
string filename = "RowWiseSparseAdagradFused";
filename += "_emd_dim_" + to_string(block_size);
filename += areIndices64b ? "_64bit" : "_32bit";
filename += instSet == inst_set_t::avx512 ? "_avx512" : "_avx2";
if (prefetch) {
filename += "_prefetch";
}
filename += ".txt";
FILE* codeLogFile = fopen(filename.c_str(), "w");
asmjit::FileLogger* codeLogger = new asmjit::FileLogger(codeLogFile);
code.setLogger(codeLogger);
#endif
x86::Gp output_size = a->zdi();
x86::Gp index_size = a->zsi();
x86::Gp data_size = a->zdx();
x86::Gp w = a->zcx();
x86::Gp g = a->gpz(8);
x86::Gp h = a->gpz(9);
x86::Gp indices = a->gpz(10);
x86::Gp lengths = a->gpz(11);
x86::Xmm epsilon = x86::xmm0;
x86::Xmm lr = x86::xmm1;
x86::Gp mask_avx2 = a->gpz(12);
// reuse mask_avx2 because mask_avx2 is used only at the beginning
x86::Gpd lengths_R = a->gpz(12).r32();
x86::Gp scratchReg1 = a->gpz(13);
x86::Gp scratchReg2 = a->gpz(14); // for prefetching
asmjit::FuncDetail func;
func.init(asmjit::FuncSignatureT<
bool, // return type
int64_t, // output_size
int64_t, // index_size
int64_t, // data_size
float*, // w
const float*, // g
float*, // h
const indxType*, // indices
const int*, // lengths
float, // epsilon
float, // lr then mask_avx2
const int*>(asmjit::CallConv::kIdHost));
asmjit::FuncFrame frame;
frame.init(func);
if (instSet == inst_set_t::avx2) {
frame.setDirtyRegs(
x86::Reg::kGroupVec,
asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15));
} else {
frame.setDirtyRegs(
x86::Reg::kGroupVec,
asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15) |
asmjit::Support::bitMask(16, 17, 18, 19, 20, 21, 22, 23) |
asmjit::Support::bitMask(24, 25, 26, 27, 28, 29, 30, 31));
}
// TODO
frame.setDirtyRegs(
x86::Reg::kGroupGp,
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14));
asmjit::FuncArgsAssignment args(&func);
args.assignAll(
output_size,
index_size,
data_size,
w,
g,
h,
indices,
lengths,
epsilon,
lr,
mask_avx2);
args.updateFuncFrame(frame);
frame.finalize();
a->emitProlog(frame);
a->emitArgsAssignment(frame, args);
constexpr int vlen = simd_info<instSet>::WIDTH_32BIT_ELEMS;
constexpr int NUM_VEC_REG = simd_info<instSet>::NUM_VEC_REGS;
typedef typename simd_info<instSet>::vec_reg_t vec_reg_t;
int num_vec_regs_per_block = (block_size + vlen - 1) / vlen;
int remainder = block_size % vlen;
vec_reg_t src_vreg; // for holding embedding value temporarily
x86::Ymm mask_vreg;
// Reserve registers with small ids first because some of them need to
// be used with an instruction not supported in avx512 for which a big
// register id won't work.
int first_available_vec_reg_id = 0;
x86::Ymm partial_sum_vreg = x86::Ymm(first_available_vec_reg_id);
++first_available_vec_reg_id;
vec_reg_t float_step_vreg = vec_reg_t(first_available_vec_reg_id);
++first_available_vec_reg_id;
vec_reg_t epsilon_vreg = vec_reg_t(first_available_vec_reg_id);
++first_available_vec_reg_id;
vec_reg_t lr_vreg = vec_reg_t(first_available_vec_reg_id);
++first_available_vec_reg_id;
if (remainder) {
if (instSet == inst_set_t::avx2) {
src_vreg = vec_reg_t(first_available_vec_reg_id);
++first_available_vec_reg_id;
mask_vreg = x86::Ymm(first_available_vec_reg_id);
++first_available_vec_reg_id;
a->vmovups(
mask_vreg,
x86::ymmword_ptr(
mask_avx2, (vlen - remainder) % vlen * sizeof(int32_t)));
} else {
a->mov(scratchReg1, (1 << remainder) - 1);
a->kmovw(x86::k(1), scratchReg1);
}
}
// Need an extra mask for computing sum of gradients
int remainder_avx2 =
block_size % simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
x86::KReg reduce_mask_avx512;
if (remainder_avx2 && instSet == inst_set_t::avx512) {
reduce_mask_avx512 = x86::k(2);
a->mov(scratchReg1, (1 << remainder_avx2) - 1);
a->kmovw(reduce_mask_avx512, scratchReg1);
}
int unroll_factor = NUM_VEC_REG - first_available_vec_reg_id;
a->vpbroadcastd(epsilon_vreg, epsilon);
a->vpbroadcastd(lr_vreg, lr);
// Compute the end address of indices
a->imul(
scratchReg1,
index_size,
static_cast<asmjit::Imm>(sizeof(indxType)));
a->add(scratchReg1, indices);
a->mov(index_size, scratchReg1);
asmjit::Label exit = a->newLabel();
asmjit::Label error = a->newLabel();
asmjit::Label LoopRangeIndexBegin = a->newLabel();
asmjit::Label LoopRangeIndexEnd = a->newLabel();
// rangeIndex loop begin (iterate output_size times)
a->bind(LoopRangeIndexBegin);
a->dec(output_size);
a->jl(LoopRangeIndexEnd);
// Compute sq avg of gradients
// Even with avx512, we only need to use avx2 registers when computing
// partial_sum because some instructions we're using like vhaddps
// are only in avx2.
constexpr int vlen_avx2 =
simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
int num_vec_regs_per_block_avx2 =
(block_size + vlen_avx2 - 1) / vlen_avx2;
a->vxorps(partial_sum_vreg, partial_sum_vreg, partial_sum_vreg);
// TODO: need to do a tree-reduction to fully take advantage of
// unrolling
for (int vec_idx = 0; vec_idx < num_vec_regs_per_block_avx2;
vec_idx += unroll_factor) {
int cur_unroll_factor =
std::min(unroll_factor, num_vec_regs_per_block_avx2 - vec_idx);
for (int v = 0; v < cur_unroll_factor; ++v) {
x86::Ymm out_vreg = x86::Ymm(v + first_available_vec_reg_id);
auto g_ptr =
x86::dword_ptr(g, (vec_idx + v) * vlen_avx2 * sizeof(float));
if (block_size % simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS &&
vec_idx + v == num_vec_regs_per_block_avx2 - 1) {
if (instSet == inst_set_t::avx2) {
a->vmaskmovps(out_vreg, mask_vreg, g_ptr);
} else {
a->k(reduce_mask_avx512).z().vmovups(out_vreg, g_ptr);
}
} else {
a->vmovups(out_vreg, g_ptr);
}
a->vmulps(out_vreg, out_vreg, out_vreg);
a->vaddps(partial_sum_vreg, partial_sum_vreg, out_vreg);
}
}
// Reduce sum to 1 value
// __m256 partial_sum_2 = _mm256_hadd_ps(partial_sum, partial_sum);
// __m256 partial_sum_3 = _mm256_hadd_ps(partial_sum_2, partial_sum_2);
// Use YMM/XMMs with smaller ids for AVX2 specific instructions like
// vhaddps
x86::Xmm partial_sum_xmm = x86::Xmm(partial_sum_vreg.id());
x86::Xmm float_step_xmm = x86::Xmm(float_step_vreg.id());
// a->vmovups(partial_sum_temp0_ymm, partial_sum_vreg);
a->vhaddps(partial_sum_vreg, partial_sum_vreg, partial_sum_vreg);
a->vhaddps(partial_sum_vreg, partial_sum_vreg, partial_sum_vreg);
//_mm_cvtss_f32(_mm256_castps256_ps128(partial_sum_3))
a->movss(float_step_xmm, partial_sum_xmm);
//_mm_cvtss_f32(_mm256_extractf128_ps(partial_sum_3, 1))
a->vextractf128(partial_sum_xmm, partial_sum_vreg, 1);
// final_sum = _mm_cvtss_f32(_mm256_castps256_ps128(partial_sum_3)) +
// _mm_cvtss_f32(_mm256_extractf128_ps(partial_sum_3, 1));
a->addss(partial_sum_xmm, float_step_xmm);
// This fragment moves block size (N) to stack and bcasts it to xmm reg
a->lea(
x86::rsp,
x86::dword_ptr(x86::rsp, -1 * static_cast<int>(sizeof(int32_t))));
a->mov(x86::dword_ptr(x86::rsp), block_size);
a->vbroadcastss(
float_step_xmm,
x86::dword_ptr(x86::rsp)); // N is partial_sum_xmm1
a->vcvtdq2ps(float_step_xmm, float_step_xmm);
a->lea(x86::rsp, x86::dword_ptr(x86::rsp, sizeof(int32_t)));
// final_sum /= N
a->divss(partial_sum_xmm, float_step_xmm);
a->mov(lengths_R, x86::dword_ptr(lengths));
// Array out of bound check
a->imul(
scratchReg1, lengths_R, static_cast<asmjit::Imm>(sizeof(indxType)));
a->add(scratchReg1, indices);
a->cmp(scratchReg1, index_size);
a->jg(error);
asmjit::Label LoopDataIndexBegin = a->newLabel();
asmjit::Label LoopDataIndexEnd = a->newLabel();
// dataIndex loop begins (iterate lengths_R_ times)
a->bind(LoopDataIndexBegin);
a->dec(lengths_R);
a->jl(LoopDataIndexEnd);
// Array out of bound check
if (areIndices64b) {
a->mov(scratchReg1, x86::qword_ptr(indices));
} else {
a->mov(scratchReg1.r32(), x86::dword_ptr(indices));
}
a->cmp(scratchReg1, 0);
a->jl(error);
a->cmp(scratchReg1, data_size);
a->jge(error);
if (prefetch) {
asmjit::Label pref_dist_reset_start = a->newLabel();
asmjit::Label pref_dist_reset_end = a->newLabel();
// out of bound handling for prefetch
a->mov(scratchReg2, indices);
a->add(
scratchReg2,
static_cast<asmjit::Imm>(prefetch * sizeof(indxType)));
a->cmp(scratchReg2, index_size);
a->jge(pref_dist_reset_start);
if (areIndices64b) {
a->mov(
scratchReg2,
x86::qword_ptr(indices, prefetch * sizeof(indxType)));
} else {
a->mov(
scratchReg2.r32(),
x86::dword_ptr(indices, prefetch * sizeof(indxType)));
}
a->cmp(scratchReg2, 0);
a->jl(pref_dist_reset_start);
a->cmp(scratchReg2, data_size);
a->jge(pref_dist_reset_start);
// everything is okay, prefetch a few rows ahead
a->jmp(pref_dist_reset_end);
a->bind(pref_dist_reset_start);
// things are not okay just get the current row
// this can be improved to getting the max dist row.
if (areIndices64b) {
a->mov(scratchReg2, x86::qword_ptr(indices));
} else {
a->mov(scratchReg2.r32(), x86::dword_ptr(indices));
}
a->bind(pref_dist_reset_end);
a->imul(scratchReg2, static_cast<asmjit::Imm>(sizeof(float)));
}
a->add(indices, static_cast<asmjit::Imm>(sizeof(indxType)));
a->imul(scratchReg1, static_cast<asmjit::Imm>(sizeof(float)));
if (prefetch) {
a->prefetchw(x86::dword_ptr(h, scratchReg2));
}
// load h
a->movss(float_step_xmm, x86::dword_ptr(h, scratchReg1));
// *h + final_sum
a->addss(float_step_xmm, partial_sum_xmm);
// store h
a->movss(x86::dword_ptr(h, scratchReg1), float_step_xmm);
// sqrt(hi)
a->sqrtss(float_step_xmm, float_step_xmm);
// bcast partial to all of ymm/zmm reg
a->vpbroadcastd(float_step_vreg, float_step_xmm);
// lr / sqrt(hi) + epsilon
a->vaddps(float_step_vreg, float_step_vreg, epsilon_vreg);
a->vdivps(float_step_vreg, lr_vreg, float_step_vreg);
a->imul(scratchReg1, static_cast<asmjit::Imm>(block_size));
if (prefetch) {
a->imul(scratchReg2, static_cast<asmjit::Imm>(block_size));
}
for (int vec_idx = 0; vec_idx < num_vec_regs_per_block;
vec_idx += unroll_factor) {
int cur_unroll_factor =
std::min(unroll_factor, num_vec_regs_per_block - vec_idx);
// The main computation
for (int v = 0; v < cur_unroll_factor; ++v) {
vec_reg_t out_vreg = vec_reg_t(v + first_available_vec_reg_id);
auto g_ptr =
x86::dword_ptr(g, (vec_idx + v) * vlen * sizeof(float));
auto w_ptr = x86::dword_ptr(
w, scratchReg1, 0, (vec_idx + v) * vlen * sizeof(float));
if (remainder && vec_idx + v == num_vec_regs_per_block - 1) {
if (instSet == inst_set_t::avx2) {
a->vmaskmovps(x86::ymm(src_vreg.id()), mask_vreg, g_ptr);
a->vmulps(src_vreg, float_step_vreg, src_vreg);
a->vmaskmovps(x86::ymm(out_vreg.id()), mask_vreg, w_ptr);
a->vaddps(out_vreg, src_vreg, out_vreg);
a->vmaskmovps(w_ptr, mask_vreg, x86::ymm(out_vreg.id()));
} else {
a->k(x86::k(1)).vmulps(out_vreg, float_step_vreg, g_ptr);
a->k(x86::k(1)).vaddps(out_vreg, out_vreg, w_ptr);
a->k(x86::k(1)).vmovups(w_ptr, out_vreg);
}
} else {
a->vmulps(out_vreg, float_step_vreg, g_ptr);
a->vaddps(out_vreg, out_vreg, w_ptr);
a->vmovups(w_ptr, out_vreg);
}
constexpr int CACHE_LINE_LEN = 64;
constexpr int BYTES_PER_VLOAD = vlen * sizeof(float);
constexpr int VLOAD_PER_CACHE_LINE =
CACHE_LINE_LEN / BYTES_PER_VLOAD;
if (prefetch && (vec_idx + v) % VLOAD_PER_CACHE_LINE == 0) {
a->prefetchw(x86::dword_ptr(
w, scratchReg2, 0, (vec_idx + v) * BYTES_PER_VLOAD));
}
}
}
a->jmp(LoopDataIndexBegin);
a->bind(LoopDataIndexEnd);
a->add(lengths, static_cast<asmjit::Imm>(sizeof(int)));
a->add(g, static_cast<asmjit::Imm>(block_size * sizeof(float)));
a->jmp(LoopRangeIndexBegin);
a->bind(LoopRangeIndexEnd);
a->cmp(indices, index_size);
a->jne(error);
a->mov(x86::eax, true);
a->jmp(exit);
a->bind(error);
a->mov(x86::eax, false);
a->bind(exit);
a->emitEpilog(frame);
// jit_fused8bitembedding_kernel fn;
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
fn;
asmjit::Error err;
{
unique_lock<mutex> lock(rtMutex_);
err = runtime().add(&fn, &code);
}
if (err) {
cout << "Error: in fn add" << endl;
return nullptr;
}
#if defined(FBGEMM_LOG_CODE)
fclose(codeLogFile);
delete codeLogger;
#endif
return fn;
});
} // getOrCreate
} // namespace
template <typename IndexType>
FBGEMM_API typename RowWiseSparseAdaGradFusedSignature<IndexType>::Type
GenerateRowWiseSparseAdaGradFused(
int block_size, // number of parameters per row
int prefetch) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
// Always use avx2 because avx512 doesn't provide speedups
if (fbgemmHasAvx512Support() || fbgemmHasAvx2Support()) {
static GenRowWiseSparseAdagradFused<IndexType, inst_set_t::avx2>
kernel_generator;
const auto original_func =
kernel_generator.getOrCreate(block_size, prefetch);
const auto lambda_func = [=](int64_t output_size,
int64_t index_size,
int64_t data_size,
float* w,
const float* g,
float* h,
const IndexType* indices,
const int* lengths,
float epsilon,
float lr) {
return original_func(
output_size,
index_size,
data_size,
w, // input/output parameters
g, // input gradients
h, // input/output momentums
indices, // indices of each row
lengths,
epsilon,
lr,
internal::avx2_ps_or_epi32_combined_mask);
};
return lambda_func;
} else {
return [=](int64_t output_size,
int64_t index_size,
int64_t data_size,
float* w,
const float* g,
float* h,
const IndexType* indices,
const int* lengths,
float epsilon,
float lr) {
return rowwise_sparse_adagrad_fused_ref(
block_size,
output_size,
index_size,
data_size,
w,
g,
h,
indices,
lengths,
epsilon,
lr);
};
}
}
template FBGEMM_API typename RowWiseSparseAdaGradFusedSignature<int64_t>::Type
GenerateRowWiseSparseAdaGradFused<int64_t>(
int block_size, // number of parameters per row
int prefetch);
template FBGEMM_API typename RowWiseSparseAdaGradFusedSignature<int32_t>::Type
GenerateRowWiseSparseAdaGradFused<int32_t>(
int block_size, // number of parameters per row
int prefetch);
} // namespace fbgemm