forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseAdagrad.cc
859 lines (756 loc) · 29 KB
/
SparseAdagrad.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include "fbgemm/FbgemmEmbedding.h"
#include <asmjit/asmjit.h>
#include <cpuinfo.h>
#include <cmath>
#include <iostream>
#include <mutex>
#include <string>
#include <tuple>
#include "./CodeCache.h"
#include "./MaskAvx2.h"
#include "./RefImplementations.h"
#include "fbgemm/Utils.h"
namespace fbgemm {
namespace {
namespace x86 = asmjit::x86;
template <typename indxType = std::int64_t>
class ReturnFunctionSignature {
public:
using jit_sparse_adagrad_kernel = int (*)(
int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const indxType* indices, // indices of each row
float epsilon,
float lr,
const int* mask_avx2);
};
template <
typename indxType = std::int64_t,
inst_set_t instSet = inst_set_t::avx2>
class GenSparseAdagrad {
public:
GenSparseAdagrad() {}
void genSparseAdagrad(
x86::Emitter* a,
int unroll_factor,
int num_vec_regs_per_block,
int remainder,
int prefetch,
typename simd_info<instSet>::vec_reg_t epsilon_vreg,
typename simd_info<instSet>::vec_reg_t lr_vreg,
x86::Ymm mask_vreg,
typename simd_info<instSet>::vec_reg_t temp_vreg);
void genRowwiseSparseAdagrad(
x86::Emitter* a,
int block_size,
int unroll_factor,
int num_vec_regs_per_block,
int remainder,
int prefetch,
typename simd_info<instSet>::vec_reg_t epsilon_vreg,
typename simd_info<instSet>::vec_reg_t lr_vreg,
x86::Ymm mask_vreg,
typename simd_info<instSet>::vec_reg_t temp_vreg);
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
getOrCreate(int block_size, int prefetch, bool rowwise);
private:
static asmjit::JitRuntime& runtime() {
static asmjit::JitRuntime rt; // JIT Runtime for asmjit
return rt;
}
static std::mutex rtMutex_; /// Controll access to runtime;
// The hash depends on embedding dimension (block size), and prefetch distance
static CodeCache<
std::tuple<int, int, bool>,
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel>
codeCache_; ///< JIT Code Cache for reuse.
// These are register we share accross SparseAdagrad and RowwiseSparseAdagrad
x86::Gp w;
x86::Gp g;
x86::Gp h;
x86::Gp indices;
x86::Gp base_offset;
x86::Gp temp1_; // loop counter
x86::Gp temp2_; // prefetch offset
x86::Gp temp3_; // prefetch offset of moment in rowwise adagrad
x86::KReg reduce_mask_avx512_;
}; // GenEmbeddingLookup
template <typename indxType, inst_set_t instSet>
std::mutex GenSparseAdagrad<indxType, instSet>::rtMutex_;
template <typename indxType, inst_set_t instSet>
CodeCache<
std::tuple<int, int, bool>,
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel>
GenSparseAdagrad<indxType, instSet>::codeCache_;
template <typename indxType, inst_set_t instSet>
void GenSparseAdagrad<indxType, instSet>::genSparseAdagrad(
x86::Emitter* a,
int unroll_factor,
int num_vec_regs_per_block,
int remainder,
int prefetch,
typename simd_info<instSet>::vec_reg_t epsilon_vreg,
typename simd_info<instSet>::vec_reg_t lr_vreg,
x86::Ymm mask_vreg,
typename simd_info<instSet>::vec_reg_t temp_vreg) {
// NOTE: temp_vreg is defined only when remainder is true and instSet == avx2
typedef typename simd_info<instSet>::vec_reg_t vec_reg_t;
constexpr int vlen = simd_info<instSet>::WIDTH_32BIT_ELEMS;
for (int vec_idx = 0; vec_idx < num_vec_regs_per_block;
vec_idx += unroll_factor) {
int cur_unroll_factor =
std::min(unroll_factor, num_vec_regs_per_block - vec_idx);
for (int v = 0; v < cur_unroll_factor; ++v) {
vec_reg_t out_vreg = vec_reg_t(v);
vec_reg_t g_vreg = vec_reg_t(v + cur_unroll_factor);
if (prefetch && ((vec_idx + v) % (64 / (vlen * sizeof(float))) == 0)) {
// Intel SDE (wrongly) thinks prefetchwt1 is not available in BDW
a->prefetchw(
x86::dword_ptr(h, temp2_, 0, (vec_idx + v) * vlen * sizeof(float)));
a->prefetchw(
x86::dword_ptr(w, temp2_, 0, (vec_idx + v) * vlen * sizeof(float)));
}
auto g_ptr = x86::dword_ptr(g, (vec_idx + v) * vlen * sizeof(float));
auto h_ptr = x86::dword_ptr(
h, base_offset, 0, (vec_idx + v) * vlen * sizeof(float));
auto w_ptr = x86::dword_ptr(
w, base_offset, 0, (vec_idx + v) * vlen * sizeof(float));
if (remainder && vec_idx + v == num_vec_regs_per_block - 1) {
if (instSet == inst_set_t::avx2) {
a->vmaskmovps(x86::ymm(g_vreg.id()), mask_vreg, g_ptr);
a->vmulps(out_vreg, g_vreg, g_vreg);
a->vmaskmovps(x86::ymm(temp_vreg.id()), mask_vreg, h_ptr);
a->vaddps(out_vreg, out_vreg, temp_vreg);
a->vmaskmovps(h_ptr, mask_vreg, x86::ymm(out_vreg.id()));
a->vsqrtps(out_vreg, out_vreg);
a->vaddps(out_vreg, out_vreg, epsilon_vreg);
a->vmulps(g_vreg, lr_vreg, g_vreg);
a->vdivps(out_vreg, g_vreg, out_vreg);
a->vmaskmovps(x86::ymm(temp_vreg.id()), mask_vreg, w_ptr);
a->vaddps(out_vreg, out_vreg, temp_vreg);
a->vmaskmovps(w_ptr, mask_vreg, x86::ymm(out_vreg.id()));
} else if (instSet == inst_set_t::avx512) {
a->k(x86::k(1)).vmovups(g_vreg, g_ptr);
a->k(x86::k(1)).vmulps(out_vreg, g_vreg, g_vreg);
a->k(x86::k(1)).vaddps(out_vreg, out_vreg, h_ptr);
a->k(x86::k(1)).vmovups(h_ptr, out_vreg);
a->k(x86::k(1)).vsqrtps(out_vreg, out_vreg);
a->k(x86::k(1)).vaddps(out_vreg, out_vreg, epsilon_vreg);
a->k(x86::k(1)).vmulps(g_vreg, lr_vreg, g_vreg);
a->k(x86::k(1)).vdivps(out_vreg, g_vreg, out_vreg);
a->k(x86::k(1)).vaddps(out_vreg, out_vreg, w_ptr);
a->k(x86::k(1)).vmovups(w_ptr, out_vreg);
}
} else {
a->vmovups(g_vreg, g_ptr);
a->vmulps(out_vreg, g_vreg, g_vreg);
a->vaddps(out_vreg, out_vreg, h_ptr);
a->vmovups(h_ptr, out_vreg);
a->vsqrtps(out_vreg, out_vreg);
a->vaddps(out_vreg, out_vreg, epsilon_vreg);
a->vmulps(g_vreg, lr_vreg, g_vreg);
a->vdivps(out_vreg, g_vreg, out_vreg);
a->vaddps(out_vreg, out_vreg, w_ptr);
a->vmovups(w_ptr, out_vreg);
}
}
}
}
template <typename indxType, inst_set_t instSet>
void GenSparseAdagrad<indxType, instSet>::genRowwiseSparseAdagrad(
x86::Emitter* a,
int block_size,
int unroll_factor,
int num_vec_regs_per_block,
int remainder,
int prefetch,
typename simd_info<instSet>::vec_reg_t epsilon_vreg,
typename simd_info<instSet>::vec_reg_t lr_vreg,
x86::Ymm mask_vreg,
typename simd_info<instSet>::vec_reg_t temp_vreg) {
typedef typename simd_info<instSet>::vec_reg_t vec_reg_t;
constexpr int vlen = simd_info<instSet>::WIDTH_32BIT_ELEMS;
// Reduce the unroll factor by 1 for partial sum
--unroll_factor;
vec_reg_t partial_sum_vreg = vec_reg_t(unroll_factor);
if (prefetch) {
a->prefetchw(x86::dword_ptr(h, temp3_));
}
// Even with avx512, we only need to use avx2 registers when computing
// partial_sum because some instructions we're using like vhaddps
// are only in avx2.
constexpr int vlen_avx2 = simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
int num_vec_regs_per_block_avx2 = (block_size + vlen_avx2 - 1) / vlen_avx2;
// Use YMM/XMMs with smaller ids for AVX2 specific instructions like vhaddps
x86::Ymm partial_sum_vreg_avx2 = x86::Ymm(0);
x86::Xmm partial_sum_xmm0 = x86::Xmm(partial_sum_vreg_avx2.id());
a->vxorps(
partial_sum_vreg_avx2, partial_sum_vreg_avx2, partial_sum_vreg_avx2);
// TODO: need to do a tree-reduction to fully take advantage of unrolling
for (int vec_idx = 0; vec_idx < num_vec_regs_per_block_avx2;
vec_idx += unroll_factor - 1) {
int cur_unroll_factor =
std::min(unroll_factor - 1, num_vec_regs_per_block_avx2 - vec_idx);
for (int v = 0; v < cur_unroll_factor; ++v) {
x86::Ymm out_vreg = x86::Ymm(v + 1);
auto g_ptr = x86::dword_ptr(g, (vec_idx + v) * vlen_avx2 * sizeof(float));
if (block_size % simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS &&
vec_idx + v == num_vec_regs_per_block_avx2 - 1) {
if (instSet == inst_set_t::avx2) {
a->vmaskmovps(out_vreg, mask_vreg, g_ptr);
} else {
a->k(reduce_mask_avx512_).z().vmovups(out_vreg, g_ptr);
}
} else {
a->vmovups(out_vreg, g_ptr);
}
a->vmulps(out_vreg, out_vreg, out_vreg);
a->vaddps(partial_sum_vreg_avx2, partial_sum_vreg_avx2, out_vreg);
}
}
// Reduce sum to 1 value
// __m256 partial_sum_2 = _mm256_hadd_ps(partial_sum, partial_sum);
// __m256 partial_sum_3 = _mm256_hadd_ps(partial_sum_2, partial_sum_2);
a->vhaddps(
partial_sum_vreg_avx2, partial_sum_vreg_avx2, partial_sum_vreg_avx2);
a->vhaddps(
partial_sum_vreg_avx2, partial_sum_vreg_avx2, partial_sum_vreg_avx2);
x86::Xmm partial_sum_xmm1 = x86::Xmm(1);
//_mm_cvtss_f32(_mm256_castps256_ps128(partial_sum_3))
a->movss(partial_sum_xmm1, partial_sum_xmm0);
//_mm_cvtss_f32(_mm256_extractf128_ps(partial_sum_3, 1))
a->vextractf128(partial_sum_xmm0, partial_sum_vreg_avx2, 1);
// final_sum = _mm_cvtss_f32(_mm256_castps256_ps128(partial_sum_3)) +
// _mm_cvtss_f32(_mm256_extractf128_ps(partial_sum_3, 1));
a->addss(partial_sum_xmm0, partial_sum_xmm1);
// This fragment moves block size (N) to stack and bcasts it to xmm reg
a->lea(
x86::rsp,
x86::dword_ptr(x86::rsp, -1 * static_cast<int>(sizeof(int32_t))));
a->mov(x86::dword_ptr(x86::rsp), block_size);
a->vbroadcastss(
partial_sum_xmm1, x86::dword_ptr(x86::rsp)); // N is partial_sum_xmm1
a->vcvtdq2ps(partial_sum_xmm1, partial_sum_xmm1);
a->lea(x86::rsp, x86::dword_ptr(x86::rsp, sizeof(int32_t)));
// final_sum /= N
a->divss(partial_sum_xmm0, partial_sum_xmm1);
// load h
a->movss(partial_sum_xmm1, x86::dword_ptr(h, base_offset));
// *h + final_sum
a->addss(partial_sum_xmm0, partial_sum_xmm1);
// store h
a->movss(x86::dword_ptr(h, base_offset), partial_sum_xmm0);
// sqrt(hi)
a->sqrtss(partial_sum_xmm0, partial_sum_xmm0);
// bcast partial to all of ymm/zmm reg
a->vpbroadcastd(partial_sum_vreg, partial_sum_xmm0);
// lr / sqrt(hi) + epsilon
a->vaddps(partial_sum_vreg, partial_sum_vreg, epsilon_vreg);
a->vdivps(partial_sum_vreg, lr_vreg, partial_sum_vreg);
// partial_sum_vreg now has float_step
bool areIndices64b = std::is_same<indxType, std::int64_t>::value;
if (areIndices64b) {
a->imul(
base_offset,
x86::qword_ptr(
indices,
temp1_,
3), // use of 3 is to muliply by 8 (int64_t)
static_cast<asmjit::Imm>(block_size * sizeof(float)));
} else {
a->imul(
base_offset.r32(),
x86::dword_ptr(
indices,
temp1_,
2), // use of 2 is to muliply by 4 (int32_t)
static_cast<asmjit::Imm>(block_size * sizeof(float)));
}
for (int vec_idx = 0; vec_idx < num_vec_regs_per_block;
vec_idx += unroll_factor) {
int cur_unroll_factor =
std::min(unroll_factor, num_vec_regs_per_block - vec_idx);
for (int v = 0; v < cur_unroll_factor; ++v) {
vec_reg_t out_vreg = vec_reg_t(v);
if (prefetch && ((vec_idx + v) % (64 / (vlen * sizeof(float))) == 0)) {
a->prefetchw(
x86::dword_ptr(w, temp2_, 0, (vec_idx + v) * vlen * sizeof(float)));
}
auto g_ptr = x86::dword_ptr(g, (vec_idx + v) * vlen * sizeof(float));
auto w_ptr = x86::dword_ptr(
w, base_offset, 0, (vec_idx + v) * vlen * sizeof(float));
if (remainder && vec_idx + v == num_vec_regs_per_block - 1) {
if (instSet == inst_set_t::avx2) {
a->vmaskmovps(x86::ymm(temp_vreg.id()), mask_vreg, g_ptr);
a->vmulps(temp_vreg, partial_sum_vreg, temp_vreg);
a->vmaskmovps(x86::ymm(out_vreg.id()), mask_vreg, w_ptr);
a->vaddps(out_vreg, temp_vreg, out_vreg);
a->vmaskmovps(w_ptr, mask_vreg, x86::ymm(out_vreg.id()));
} else {
a->k(x86::k(1)).vmulps(out_vreg, partial_sum_vreg, g_ptr);
a->k(x86::k(1)).vaddps(out_vreg, out_vreg, w_ptr);
a->k(x86::k(1)).vmovups(w_ptr, out_vreg);
}
} else {
a->vmulps(out_vreg, partial_sum_vreg, g_ptr);
a->vaddps(out_vreg, out_vreg, w_ptr);
a->vmovups(w_ptr, out_vreg);
}
}
}
}
template <typename indxType, inst_set_t instSet>
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
GenSparseAdagrad<indxType, instSet>::getOrCreate(
int block_size,
int prefetch,
bool rowwise) {
std::tuple<int, int, bool> kernelSig =
std::make_tuple(block_size, prefetch, rowwise);
return codeCache_.getOrCreate(
kernelSig,
[&]() ->
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel {
asmjit::CodeHolder code;
code.init(runtime().codeInfo());
x86::Assembler assembler(&code);
x86::Emitter* a = assembler.as<x86::Emitter>();
bool areIndices64b = std::is_same<indxType, std::int64_t>::value;
#if defined(FBGEMM_LOG_CODE)
std::string filename = "SparseAdagrad";
filename += "_emd_dim_" + std::to_string(block_size);
if (rowwise) {
filename += "_rowwise";
}
filename += areIndices64b ? "_64bit" : "_32bit";
filename += instSet == inst_set_t::avx512 ? "_avx512" : "_avx2";
if (prefetch) {
filename += "_prefetch";
}
filename += ".txt";
FILE* codeLogFile = fopen(filename.c_str(), "w");
asmjit::FileLogger* codeLogger = new asmjit::FileLogger(codeLogFile);
code.setLogger(codeLogger);
#endif
x86::Gpd num_rows = a->zdi().r32();
x86::Gp param_size = a->zsi();
w = a->zdx();
g = a->zcx();
h = a->gpz(8);
indices = a->gpz(9);
x86::Xmm epsilon = x86::xmm0;
x86::Xmm lr = x86::xmm1;
x86::Gp mask_avx2 = a->gpz(10);
// reuse mask_avx2 because mask_avx2 is used only at the beginning
base_offset = a->gpz(10);
temp1_ = a->gpz(11);
temp2_ = a->gpz(12);
temp3_ = a->gpz(13);
asmjit::FuncDetail func;
func.init(asmjit::FuncSignatureT<
int, // return type
int, // num rows
std::uint64_t, // param_size
float*, // w
const float*, // g
float*, // h
const indxType*, // indices
float, // epsilon
float, // lr then mask_avx2
const int*>(asmjit::CallConv::kIdHost));
asmjit::FuncFrame frame;
frame.init(func);
if (instSet == inst_set_t::avx2) {
frame.setDirtyRegs(
x86::Reg::kGroupVec,
asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15));
} else {
frame.setDirtyRegs(
x86::Reg::kGroupVec,
asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15) |
asmjit::Support::bitMask(16, 17, 18, 19, 20, 21, 22, 23) |
asmjit::Support::bitMask(24, 25, 26, 27, 28, 29, 30, 31));
}
frame.setDirtyRegs(
x86::Reg::kGroupGp, asmjit::Support::bitMask(8, 9, 10, 11, 12, 13));
asmjit::FuncArgsAssignment args(&func);
args.assignAll(
num_rows, param_size, w, g, h, indices, epsilon, lr, mask_avx2);
args.updateFuncFrame(frame);
frame.finalize();
a->emitProlog(frame);
a->emitArgsAssignment(frame, args);
constexpr int vlen = simd_info<instSet>::WIDTH_32BIT_ELEMS;
constexpr int NUM_VEC_REG = simd_info<instSet>::NUM_VEC_REGS;
int unroll_factor = NUM_VEC_REG;
typedef typename simd_info<instSet>::vec_reg_t vec_reg_t;
int num_vec_regs_per_block = (block_size + vlen - 1) / vlen;
int remainder = block_size % vlen;
vec_reg_t epsilon_vreg;
vec_reg_t lr_vreg;
x86::Ymm mask_vreg; // mask for avx2
vec_reg_t
temp_vreg; // temp vreg for avx2 to handle remainder computation
--unroll_factor;
epsilon_vreg = vec_reg_t(unroll_factor);
--unroll_factor;
lr_vreg = vec_reg_t(unroll_factor);
if (remainder) {
if (instSet == inst_set_t::avx2) {
--unroll_factor;
temp_vreg = vec_reg_t(unroll_factor);
}
// Creating masks for non multiples of vlen iterations
if (instSet == inst_set_t::avx2) {
--unroll_factor;
mask_vreg = x86::Ymm(unroll_factor);
a->vmovups(mask_vreg, x86::dword_ptr(mask_avx2));
} else {
a->mov(temp1_, (1 << remainder) - 1);
a->kmovw(x86::k(1), temp1_);
}
}
// Need an extra mask for computing sum of gradients
int remainder_avx2 =
block_size % simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
if (remainder_avx2 && instSet == inst_set_t::avx512 && rowwise) {
reduce_mask_avx512_ = x86::k(2);
a->mov(temp1_, (1 << remainder_avx2) - 1);
a->kmovw(reduce_mask_avx512_, temp1_);
}
if (!rowwise) {
unroll_factor = unroll_factor / 2; // accont for g_vreg
}
asmjit::Label exit = a->newLabel();
asmjit::Label LoopRangeIndexBegin = a->newLabel();
asmjit::Label LoopRangeIndexEnd = a->newLabel();
a->vpbroadcastd(epsilon_vreg, epsilon);
a->vpbroadcastd(lr_vreg, lr);
a->xor_(temp1_, temp1_);
a->bind(LoopRangeIndexBegin);
a->cmp(temp1_.r32(), num_rows); // temp1_ is the loop trip counter
a->jge(LoopRangeIndexEnd);
auto indices_ptr = areIndices64b
? x86::qword_ptr(
indices, temp1_, 3) // use of 3 is to muliply by 8 (int64_t)
: x86::dword_ptr(
indices, temp1_, 2); // use of 2 is to muliply by 4 (int32_t)
a->imul(
areIndices64b ? base_offset : base_offset.r32(),
indices_ptr,
static_cast<asmjit::Imm>(
(rowwise ? 1 : block_size) * sizeof(float)));
// Perform this check
// if (block_size + offsetIdx > param_size) {
// return i;
// }
if (areIndices64b) {
a->mov(temp2_, indices_ptr);
} else {
a->mov(temp2_.r32(), indices_ptr);
}
a->inc(temp2_);
a->imul(
temp2_,
static_cast<asmjit::Imm>(block_size)); //(offsetIdx+1)*blocksize
a->cmp(temp2_, param_size);
a->jg(exit);
if (prefetch) {
asmjit::Label pref_dist_reset_start = a->newLabel();
asmjit::Label pref_dist_reset_end = a->newLabel();
a->mov(temp2_, temp1_);
a->add(temp2_, prefetch);
a->cmp(temp2_.r32(), num_rows);
a->jge(pref_dist_reset_start);
auto pref_indices_ptr = areIndices64b
? x86::qword_ptr(indices, temp2_, 3)
: x86::dword_ptr(indices, temp2_, 2);
if (rowwise) {
a->imul(
areIndices64b ? temp3_ : temp3_.r32(),
pref_indices_ptr,
static_cast<asmjit::Imm>(sizeof(float)));
}
a->imul(
areIndices64b ? temp2_ : temp2_.r32(),
pref_indices_ptr,
static_cast<asmjit::Imm>(block_size * sizeof(float)));
a->jmp(pref_dist_reset_end);
a->bind(pref_dist_reset_start);
a->imul(
areIndices64b ? temp2_ : temp2_.r32(),
indices_ptr,
static_cast<asmjit::Imm>(block_size * sizeof(float)));
if (rowwise) {
a->imul(
areIndices64b ? temp3_ : temp3_.r32(),
indices_ptr,
static_cast<asmjit::Imm>(sizeof(float)));
}
a->bind(pref_dist_reset_end);
} // prefetch
if (rowwise) {
genRowwiseSparseAdagrad(
a,
block_size,
unroll_factor,
num_vec_regs_per_block,
remainder,
prefetch,
epsilon_vreg,
lr_vreg,
mask_vreg,
temp_vreg);
} else {
genSparseAdagrad(
a,
unroll_factor,
num_vec_regs_per_block,
remainder,
prefetch,
epsilon_vreg,
lr_vreg,
mask_vreg,
temp_vreg);
}
a->add(g, static_cast<asmjit::Imm>(block_size * sizeof(float)));
a->inc(temp1_);
a->jmp(LoopRangeIndexBegin);
a->bind(LoopRangeIndexEnd);
a->bind(exit);
a->mov(x86::eax, temp1_.r32());
a->emitEpilog(frame);
typename ReturnFunctionSignature<indxType>::jit_sparse_adagrad_kernel
fn;
asmjit::Error err;
{
std::unique_lock<std::mutex> lock(rtMutex_);
err = runtime().add(&fn, &code);
}
if (err) {
std::cout << "Error: in fn add" << std::endl;
return nullptr;
}
#if defined(FBGEMM_LOG_CODE)
fclose(codeLogFile);
delete codeLogger;
#endif
return fn;
});
} // getOrCreate
// Specialization for block size 1 internally called by GenerateSparseAdaGrad
template <typename IndexType>
int SparseAdaGradBlockSize1_(
int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const IndexType* indices, // indices of each row
float epsilon,
float lr,
bool rowwise) {
for (int i = 0; i < num_rows; ++i) {
IndexType idx = indices[i];
if (idx >= param_size) {
return i;
}
float gi = g[i];
float hi = h[idx] = h[idx] + gi * gi;
if (rowwise) {
w[idx] += lr / (std::sqrt(hi) + epsilon) * gi;
} else {
w[idx] += lr * gi / (std::sqrt(hi) + epsilon);
}
}
return num_rows;
}
template int SparseAdaGradBlockSize1_(
int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input parameters
const float* g, // input gradients
float* h, // input momentums
const std::int64_t* indices, // indices of each row
float epsilon,
float lr,
bool rowwise);
template int SparseAdaGradBlockSize1_(
int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input parameters
const float* g, // input gradients
float* h, // input momentums
const std::int32_t* indices, // indices of each row
float epsilon,
float lr,
bool rowwise);
} // namespace
template <typename IndexType>
typename SparseAdaGradSignature<IndexType>::Type GenerateSparseAdaGrad(
int block_size, // number of parameters per rows
bool rowwise,
int prefetch) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
if (fbgemmHasAvx512Support() || fbgemmHasAvx2Support()) {
if (block_size == 1) {
return [=](int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const IndexType* indices, // indices of each row
float epsilon,
float lr) {
return SparseAdaGradBlockSize1_(
num_rows, param_size, w, g, h, indices, epsilon, lr, rowwise);
};
}
static GenSparseAdagrad<IndexType, inst_set_t::avx2> kernel_generator;
constexpr int VLEN = simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
const int* mask_avx2 = &internal::avx2_ps_or_epi32_combined_mask
[(VLEN - (block_size % VLEN)) % VLEN];
const auto original_func =
kernel_generator.getOrCreate(block_size, prefetch, rowwise);
return [=](int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const IndexType* indices, // indices of each row
float epsilon,
float lr) {
return original_func(
num_rows, // number of rows reading
param_size, // total number of parameters
w, // input/output parameters
g, // input gradients
h, // input/output momentums
indices, // indices of each row
epsilon,
lr,
mask_avx2);
};
} else {
#ifdef VLOG
VLOG(0) << "AVX2 or AVX512 not found, taking the slow path";
#endif
return [=](int num_rows, // number of rows reading
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const IndexType* indices, // indices of each row
float epsilon,
float lr) {
return sparse_adagrad_ref(
num_rows, // number of rows reading
block_size, // number of parameters per rows
param_size, // total number of parameters
w, // input/output parameters
g, // input gradients
h, // input/output momentums
indices,
epsilon,
lr);
};
}
}
template <typename IndexType>
int SparseAdaGrad(
int num_rows, // number of rows reading
int block_size, // number of parameters per rows
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const IndexType* indices, // indices of each row
float epsilon,
float lr,
bool rowwise,
int prefetch) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
int num_rows_processed;
// There is a AVX512 implementation, but for perf reasons we only call AVX2
if (fbgemmHasAvx512Support() || fbgemmHasAvx2Support()) {
static GenSparseAdagrad<IndexType, inst_set_t::avx2> kernel_generator;
auto fn = kernel_generator.getOrCreate(block_size, prefetch, rowwise);
num_rows_processed =
fn(num_rows,
param_size, // total number of parameters
w, // input/output parameters
g, // input gradients
h, // input/output momentums
indices,
epsilon,
lr,
internal::avx2_ps_or_epi32_masks
[block_size % simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS]);
} else {
#ifdef VLOG
VLOG(0) << "AVX2 or AVX512 not found, taking the slow path";
#endif
num_rows_processed = sparse_adagrad_ref(
num_rows, // number of rows reading
block_size, // number of parameters per rows
param_size, // total number of parameters
w, // input/output parameters
g, // input gradients
h, // input/output momentums
indices,
epsilon,
lr);
}
return num_rows_processed;
}
template FBGEMM_API int SparseAdaGrad(
int num_rows, // number of rows reading
int block_size, // number of parameters per rows
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const std::int64_t* indices, // indices of each row
float epsilon,
float lr,
bool rowwise,
int prefetch);
template FBGEMM_API int SparseAdaGrad(
int num_rows, // number of rows reading
int block_size, // number of parameters per rows
std::uint64_t param_size, // total number of parameters
float* w, // input/output parameters
const float* g, // input gradients
float* h, // input/output momentums
const std::int32_t* indices, // indices of each row
float epsilon,
float lr,
bool rowwise,
int prefetch);
template FBGEMM_API typename SparseAdaGradSignature<std::int64_t>::Type
GenerateSparseAdaGrad<std::int64_t>(
int block_size, // number of parameters per rows
bool rowwise,
int prefetch);
template FBGEMM_API typename SparseAdaGradSignature<std::int32_t>::Type
GenerateSparseAdaGrad<std::int32_t>(
int block_size, // number of parameters per rows
bool rowwise,
int prefetch);
} // namespace fbgemm