forked from facebookresearch/ParlAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dict.py
641 lines (571 loc) · 21.1 KB
/
test_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Dictionary testing.
"""
from parlai.core.build_data import modelzoo_path
from parlai.core.dict import find_ngrams
from parlai.core.params import ParlaiParser
from parlai.core.dict import DictionaryAgent, TokenizationMode
from parlai.core.opt import Opt
import parlai.scripts.build_dict as build_dict
from parlai.utils.io import PathManager
import parlai.utils.testing as testing_utils
import os
import shutil
import unittest
import pytest
try:
from tokenizers import ByteLevelBPETokenizer # @manual # noqa: F401
TOKENIZERS = True
except ImportError:
TOKENIZERS = False
DEFAULT_BYTELEVEL_BPE_VOCAB = (
'zoo:unittest/test_bytelevel_bpe_v2/test-byte-level-bpe-v2-vocab.json'
)
DEFAULT_BYTELEVEL_BPE_MERGE = (
'zoo:unittest/test_bytelevel_bpe_v2/test-byte-level-bpe-v2-merges.txt'
)
BYTELEVEL_BPE_RESULT = [
'H',
'ello',
',',
'Ġ',
'P',
'ar',
'l',
'A',
'I',
'!',
'Ġ',
'ð',
'Ł',
'ĺ',
'Ģ',
]
GPT2_BPE_RESULT = [
'Hello',
',',
r'\xc4\xa0Par',
'l',
'AI',
'!',
r'\xc4\xa0\xc3\xb0\xc5\x81\xc4\xba',
r'\xc4\xa2',
]
slow_bytelevel_bpe_RESULT = [
'H',
'ello',
',',
'\\xc4\\xa0',
'P',
'ar',
'l',
'A',
'I',
'!',
'\\xc4\\xa0',
'\\xc3\\xb0',
'\\xc5\\x81',
'\\xc4\\xba',
'\\xc4\\xa2',
]
class TestDictionary(unittest.TestCase):
"""
Basic tests on the built-in parlai Dictionary.
"""
def test_gpt2_bpe_tokenize(self):
datapath = ParlaiParser().parse_args([], print_args=False)['datapath']
opt = Opt({'dict_tokenizer': 'gpt2', 'datapath': datapath})
agent = DictionaryAgent(opt)
self.assertEqual(
# grinning face emoji
agent.gpt2_tokenize(u'Hello, ParlAI! \U0001f600'),
GPT2_BPE_RESULT,
)
self.assertEqual(
agent.vec2txt(agent.tok2ind[w] for w in GPT2_BPE_RESULT),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
def test_space_tokenize(self):
"""
Space tokenize assumes raw tokenization as input.
"""
self.assertEqual(
DictionaryAgent.space_tokenize(' this is a test! '),
['this', 'is', 'a', 'test!'],
)
def test_split_tokenize(self):
"""
Split tokenize specially handles some limited punctuation.
"""
self.assertEqual(
DictionaryAgent.split_tokenize(' this is a test! '),
['this', 'is', 'a', 'test', '!'],
)
def test_find_ngrams(self):
"""
Test the ngram class properly recognize uni, bi, and trigrams test.
"""
s = set()
s.add('hello world')
s.add('ol boy')
res = find_ngrams(s, ['hello', 'world', 'buddy', 'ol', 'boy'], 2)
assert ' '.join(res) == 'hello world buddy ol boy'
assert '-'.join(res) == 'hello world-buddy-ol boy'
s.add('world buddy ol')
res = find_ngrams(s, ['hello', 'world', 'buddy', 'ol', 'boy'], 3)
assert ' '.join(res) == 'hello world buddy ol boy'
assert '-'.join(res) == 'hello-world buddy ol-boy'
s.add('hello world buddy')
res = find_ngrams(s, ['hello', 'world', 'buddy', 'ol', 'boy'], 3)
assert ' '.join(res) == 'hello world buddy ol boy'
assert '-'.join(res) == 'hello world buddy-ol boy'
def test_basic_parse(self):
"""
Check the dictionary is correctly adding and parsing short sentence.
"""
argparser = ParlaiParser()
DictionaryAgent.add_cmdline_args(argparser)
opt = argparser.parse_args([])
dictionary = DictionaryAgent(opt)
num_builtin = len(dictionary)
dictionary.observe({'text': 'hello world'})
dictionary.act()
assert len(dictionary) - num_builtin == 2
vec = dictionary.parse('hello world')
assert len(vec) == 2
assert vec[0] == num_builtin
assert vec[1] == num_builtin + 1
vec = dictionary.parse('hello world', vec_type=list)
assert len(vec) == 2
assert vec[0] == num_builtin
assert vec[1] == num_builtin + 1
vec = dictionary.parse('hello world', vec_type=tuple)
assert len(vec) == 2
assert vec[0] == num_builtin
assert vec[1] == num_builtin + 1
@pytest.mark.nofbcode
def test_set_model_file_without_dict_file(self):
"""
Check that moving a model without moving the dictfile raises an error.
"""
# Download model, move to a new location
with testing_utils.tempdir() as datapath:
try:
# remove unittest models if there before
shutil.rmtree(os.path.join(datapath, 'models/unittest'))
except FileNotFoundError:
pass
zoo_path = 'zoo:unittest/seq2seq/model'
model_path = modelzoo_path(datapath, zoo_path)
PathManager.rm(model_path + '.dict')
# Test that eval model fails
with self.assertRaises(RuntimeError):
testing_utils.eval_model(
dict(task='babi:task1k:1', model_file=model_path)
)
try:
# remove unittest models if there after
shutil.rmtree(os.path.join(datapath, 'models/unittest'))
except FileNotFoundError:
pass
def test_train_model_with_no_dict_file(self):
"""
Ensure training a model requires a dict_file or model_file.
"""
import parlai.scripts.train_model as tms
parser = tms.setup_args()
parser.set_params(task='babi:task1k:1', model='seq2seq')
popt = parser.parse_args([])
with self.assertRaises(RuntimeError):
tms.TrainLoop(popt)
@unittest.skipUnless(TOKENIZERS, "No tokenizers available")
class TestByteLevelBPE(unittest.TestCase):
"""
Test ByteLevelBPE is well-behaved.
"""
def test_tokenize_prefix_space(self):
"""
Tests a bytelevel bpe tokenizer inside ParlAI.
"""
parser = ParlaiParser()
parser.set_params(
dict_tokenizer='bytelevelbpe',
bpe_vocab=DEFAULT_BYTELEVEL_BPE_VOCAB,
bpe_merge=DEFAULT_BYTELEVEL_BPE_MERGE,
)
opt = parser.parse_args([])
agent = DictionaryAgent(opt)
self.assertEqual(
# grinning face emoji
agent.bytelevelbpe_tokenize(u'Hello, ParlAI! \U0001f600'),
['Ġ'] + BYTELEVEL_BPE_RESULT,
)
self.assertEqual(
agent.vec2txt([agent.tok2ind[w] for w in ['Ġ'] + BYTELEVEL_BPE_RESULT]),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
self.assertEqual(
agent.txt2vec(u'Hello, ParlAI! \U0001f600'),
[agent.tok2ind[w] for w in ['Ġ'] + BYTELEVEL_BPE_RESULT],
)
def test_byte_level_bpe_tokenize(self):
"""
Tests a bytelevel bpe tokenizer inside ParlAI.
"""
parser = ParlaiParser()
parser.set_params(
dict_tokenizer='bytelevelbpe',
bpe_vocab=DEFAULT_BYTELEVEL_BPE_VOCAB,
bpe_merge=DEFAULT_BYTELEVEL_BPE_MERGE,
bpe_add_prefix_space=False,
)
opt = parser.parse_args([])
agent = DictionaryAgent(opt)
self.assertEqual(
# grinning face emoji
agent.bytelevelbpe_tokenize(u'Hello, ParlAI! \U0001f600'),
BYTELEVEL_BPE_RESULT,
)
self.assertEqual(
agent.vec2txt([agent.tok2ind[w] for w in BYTELEVEL_BPE_RESULT]),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
self.assertEqual(
agent.txt2vec(u'Hello, ParlAI! \U0001f600'),
[agent.tok2ind[w] for w in BYTELEVEL_BPE_RESULT],
)
vocab_size = agent.bpe.tokenizer.get_vocab_size()
with testing_utils.tempdir() as tmpdir:
path = os.path.join(tmpdir, 'dict-checkpoint')
agent.save(filename=path)
agent.load(filename=path)
# Test loading / saving
self.assertEqual(vocab_size, agent.bpe.tokenizer.get_vocab_size())
self.assertEqual(
# grinning face emoji
agent.bytelevelbpe_tokenize(u'Hello, ParlAI! \U0001f600'),
BYTELEVEL_BPE_RESULT,
)
self.assertEqual(
agent.vec2txt([agent.tok2ind[w] for w in BYTELEVEL_BPE_RESULT]),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
self.assertEqual(
agent.txt2vec(u'Hello, ParlAI! \U0001f600'),
[agent.tok2ind[w] for w in BYTELEVEL_BPE_RESULT],
)
# Test special token ids are mapped correctly:
# 4 special tokens are added in ParlAI dict in the begining and at the
# end for Hugging Face null token would be 0 in ParlAI dict and
# original_vocab in Hugging Face
assert agent.txt2vec("__null__") == [0]
assert agent.txt2vec("__start__") == [1]
assert agent.txt2vec("__end__") == [2]
assert agent.txt2vec("__unk__") == [3]
def test_nofile(self):
pp = ParlaiParser()
DictionaryAgent.add_cmdline_args(pp)
with self.assertRaises(IOError):
# did not specify bpe merge or vocab
DictionaryAgent(pp.parse_args(['--dict-tokenizer', 'bytelevelbpe']))
with self.assertRaises(IOError):
# specified one
DictionaryAgent(
pp.parse_args(
[
'--dict-tokenizer',
'bytelevelbpe',
'--bpe-merge',
DEFAULT_BYTELEVEL_BPE_MERGE,
]
)
)
with self.assertRaises(IOError):
# specified the other
DictionaryAgent(
pp.parse_args(
[
'--dict-tokenizer',
'bytelevelbpe',
'--bpe-vocab',
DEFAULT_BYTELEVEL_BPE_VOCAB,
]
)
)
with self.assertRaises(IOError):
# intentionally missing file
DictionaryAgent(
pp.parse_args(
[
'--dict-tokenizer',
'bytelevelbpe',
'--bpe-merge',
'foobar', # intentionally wrong
'--bpe-vocab',
DEFAULT_BYTELEVEL_BPE_VOCAB,
]
)
)
with self.assertRaises(IOError):
# intentionally missing file
DictionaryAgent(
pp.parse_args(
[
'--dict-tokenizer',
'bytelevelbpe',
'--bpe-merge',
DEFAULT_BYTELEVEL_BPE_MERGE,
'--bpe-vocab',
'foobar', # intentionally wrong
]
)
)
def test_save_reload(self):
"""
Save and reload an existing BL-BPE dictionary.
"""
pp = ParlaiParser()
DictionaryAgent.add_cmdline_args(pp)
da = DictionaryAgent(
pp.parse_args(
[
'--dict-tokenizer',
'bytelevelbpe',
'--bpe-merge',
DEFAULT_BYTELEVEL_BPE_MERGE,
'--bpe-vocab',
DEFAULT_BYTELEVEL_BPE_VOCAB,
]
)
)
# poor behavior if we failed to load
assert da.txt2vec("hello") != []
with testing_utils.tempdir() as tmpdir:
newdf = os.path.join(tmpdir, "dict")
da.save(newdf)
# now load it
da2 = DictionaryAgent(
pp.parse_args(
['--dict-tokenizer', 'bytelevelbpe', '--dict-file', newdf]
)
)
assert da2.txt2vec("hello") == da.txt2vec("hello")
def test_add_special_tokens(self):
"""
Add a list of special tokens to the dictionary.
"""
special_toks_lst = ['MY', 'NAME', 'IS', 'EMILY']
# create Dictionary Agent
parser = ParlaiParser()
parser.set_params(
dict_tokenizer='bytelevelbpe',
bpe_vocab=DEFAULT_BYTELEVEL_BPE_VOCAB,
bpe_merge=DEFAULT_BYTELEVEL_BPE_MERGE,
)
opt = parser.parse_args([])
agent = DictionaryAgent(opt)
agent.add_additional_special_tokens(special_toks_lst)
self.assertEqual(agent.additional_special_tokens, special_toks_lst)
phrases = ['Hi what is up EMILY', 'What IS your NAME', 'That is MY dog']
for phrase in phrases:
vec = agent.txt2vec(phrase)
text = agent.vec2txt(vec)
self.assertEqual(phrase, text)
class TestBuildDict(unittest.TestCase):
def _run_test(self, opt):
with testing_utils.tempdir() as tmpdir:
dict_file = os.path.join(tmpdir, "dict")
pp = build_dict.setup_args()
pp.set_defaults(**opt)
pp.set_defaults(task='babi')
popt = pp.parse_args([])
popt['dict_file'] = dict_file
for k, v in opt.items():
popt[k] = v
def test_build_space(self):
self._run_test({'dict_tokenizer': 'space'})
def test_build_split(self):
self._run_test({'dict_tokenizer': 'split'})
def test_build_bpe(self):
self._run_test({'dict_tokenizer': 'bpe', 'max_tokens': 50})
class TestGpt2HFInterop(unittest.TestCase):
"""
Test for SlowBytelevelBPE.
Essentially, test whether using a stand-in GPT2 tokenizer for a dict originally
built with HF's tokenizer produces the same results.
"""
def _get_dict_opt(self, tokenizer: str):
parser = ParlaiParser()
parser.set_params(
dict_tokenizer=tokenizer,
bpe_vocab=DEFAULT_BYTELEVEL_BPE_VOCAB,
bpe_merge=DEFAULT_BYTELEVEL_BPE_MERGE,
bpe_add_prefix_space=False,
dict_loaded=True,
)
opt = parser.parse_args([])
return opt
def _run_test(self, slow_bytelevel_bpe, hf_bpe):
"""
run the actual test.
"""
self.assertEqual(
# grinning face emoji
slow_bytelevel_bpe.bytelevelbpe_tokenize(u'Hello, ParlAI! \U0001f600'),
slow_bytelevel_bpe_RESULT,
)
self.assertEqual(
slow_bytelevel_bpe.vec2txt(
[slow_bytelevel_bpe.tok2ind[w] for w in slow_bytelevel_bpe_RESULT]
),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
self.assertEqual(
slow_bytelevel_bpe.txt2vec(u'Hello, ParlAI! \U0001f600'),
[slow_bytelevel_bpe.tok2ind[w] for w in slow_bytelevel_bpe_RESULT],
)
vocab_size = len(slow_bytelevel_bpe.bpe.encoder)
with testing_utils.tempdir() as tmpdir:
path = os.path.join(tmpdir, 'dict-checkpoint')
slow_bytelevel_bpe.save(filename=path)
slow_bytelevel_bpe.load(filename=path)
# Test loading / saving
self.assertEqual(vocab_size, len(slow_bytelevel_bpe.bpe.encoder))
# next, check that hf_bpe and slow_bytelevel_bpe are equivalent
self.assertEqual(
slow_bytelevel_bpe.vec2txt(
[slow_bytelevel_bpe.tok2ind[w] for w in slow_bytelevel_bpe_RESULT]
),
hf_bpe.vec2txt([hf_bpe.tok2ind[w] for w in BYTELEVEL_BPE_RESULT]),
)
@pytest.mark.nofbcode
def test_gpt2standin(self):
with testing_utils.tempdir() as tmpdir:
# we need to build the dict file
hf_bpe_opt = self._get_dict_opt('bytelevelbpe')
slow_bytelevel_bpe_opt = self._get_dict_opt('slow_bytelevel_bpe')
dict_file = os.path.join(tmpdir, "dict")
pp = build_dict.setup_args()
pp.set_defaults(**hf_bpe_opt)
pp.set_defaults(task='babi')
popt = pp.parse_args([])
popt['dict_file'] = dict_file
build_dict.build_dict(popt)
hf_bpe_opt['dict_file'] = dict_file
hf_bpe = DictionaryAgent(hf_bpe_opt)
slow_bytelevel_bpe_opt['dict_file'] = dict_file
slow_bytelevel_bpe = DictionaryAgent(slow_bytelevel_bpe_opt)
self._run_test(slow_bytelevel_bpe, hf_bpe)
slow_bytelevel_bpe_opt['bpe_add_prefix_space'] = True
slow_bytelevel_bpe = DictionaryAgent(slow_bytelevel_bpe_opt)
self._run_prefix_space_test(slow_bytelevel_bpe)
def _run_prefix_space_test(self, agent):
"""
Tests gpt2standin can handle prefix space.
"""
self.assertEqual(
# grinning face emoji
agent.bytelevelbpe_tokenize(u'Hello, ParlAI! \U0001f600'),
['\\xc4\\xa0'] + slow_bytelevel_bpe_RESULT,
)
self.assertEqual(
agent.vec2txt(
[agent.tok2ind[w] for w in ['\\xc4\\xa0'] + slow_bytelevel_bpe_RESULT]
),
# grinning face emoji
u'Hello, ParlAI! \U0001f600',
)
self.assertEqual(
agent.txt2vec(u'Hello, ParlAI! \U0001f600'),
[agent.tok2ind[w] for w in ['\\xc4\\xa0'] + slow_bytelevel_bpe_RESULT],
)
class SpecialTokenTests(unittest.TestCase):
"""
Test special tokens tokenization.
"""
def _run_specialtok_test(self, **kwargs):
for special_token in ['SPECIAL TOKENS', '[SPECIAL; TOKENS]']:
with testing_utils.tempdir() as tmpdir:
if 'dict_file' not in kwargs:
kwargs['dict_file'] = os.path.join(tmpdir, 'dict')
string = f"This is a test of {special_token}"
parser = ParlaiParser(False, False)
DictionaryAgent.add_cmdline_args(parser)
opt = parser.parse_kwargs(**kwargs)
da = DictionaryAgent(opt)
before = da.tokenize(string)
da.add_additional_special_tokens([special_token])
after = da.tokenize(string)
assert before != after
assert len(before) > len(after)
assert after[-1] == special_token
assert before[:5] == after[:5]
if opt['dict_tokenizer'] in (
'bytelevelbpe',
'gpt2',
'slow_bytelevel_bpe',
):
# we need to let the dictionary handle the tokenid mappings
assert da.vec2txt(da.txt2vec(string)) == string
def test_specialtok_slow_bytelevel_bpe(self):
self._run_specialtok_test(
dict_tokenizer="slow_bytelevel_bpe", dict_file="zoo:blender/dict_3B/dict"
)
@unittest.skipUnless(TOKENIZERS, "No tokenizers available")
def test_specialtok_bytelevelbpe(self):
self._run_specialtok_test(
dict_tokenizer="bytelevelbpe", dict_file="zoo:blender/dict_3B/dict"
)
def test_specialtok_gpt2(self):
self._run_specialtok_test(dict_tokenizer="gpt2")
def test_specialtok_re(self):
self._run_specialtok_test(dict_tokenizer='re')
def test_specialtok_space(self):
self._run_specialtok_test(dict_tokenizer='space')
def test_specialtok_split(self):
self._run_specialtok_test(dict_tokenizer='split')
def test_specialtok_nonsupport(self):
for tokenizer in ["bpe"]:
with self.assertRaises(NotImplementedError):
self._run_specialtok_test(dict_tokenizer=tokenizer)
class TestBpeDropout(unittest.TestCase):
def _test_bpe_dropout(self, **dict_args):
pp = ParlaiParser(False, False)
DictionaryAgent.add_cmdline_args(pp)
opt = pp.parse_kwargs(bpe_dropout=0.5, **dict_args)
da = DictionaryAgent(opt)
da.set_tokenization_mode(TokenizationMode.TEST_TIME_TEXT)
s = (
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. "
"Donec vitae metus sollicitudin, ullamcorper tortor ut, rhoncus lacus. "
"Praesent sollicitudin commodo turpis, ut pharetra tortor gravida nec."
)
no_dropout = da.txt2vec(s)
da.set_tokenization_mode(TokenizationMode.TRAIN_TIME_TEXT)
not_the_same = 0
for _ in range(30):
r = da.txt2vec(s)
assert da.vec2txt(r) == s
if r != no_dropout:
not_the_same += 1
assert not_the_same > 0
def test_gpt2_bpe_dropout(self):
self._test_bpe_dropout(dict_tokenizer='gpt2')
def test_slowbytelevel_dropout(self):
self._test_bpe_dropout(
dict_tokenizer="slow_bytelevel_bpe", dict_file="zoo:blender/dict_3B/dict"
)
def test_bytelevelbpe_dropout(self):
with self.assertRaises(NotImplementedError):
self._test_bpe_dropout(
dict_tokenizer="bytelevelbpe", dict_file="zoo:blender/dict_3B/dict"
)