-
Notifications
You must be signed in to change notification settings - Fork 48
/
guidingNet.py
95 lines (80 loc) · 3.02 KB
/
guidingNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
TUNIT: Truly Unsupervised Image-to-Image Translation
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
from torch import nn
import torch.nn.functional as F
try:
from models.blocks import Conv2dBlock, FRN
except:
from blocks import Conv2dBlock, FRN
cfg = {
'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
'vgg19cut': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'N'],
}
class GuidingNet(nn.Module):
def __init__(self, img_size=64, output_k={'cont': 128, 'disc': 10}):
super(GuidingNet, self).__init__()
# network layers setting
self.features = make_layers(cfg['vgg11'], True)
self.disc = nn.Linear(512, output_k['disc'])
self.cont = nn.Linear(512, output_k['cont'])
self._initialize_weights()
def forward(self, x, sty=False):
x = self.features(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
flat = x.view(x.size(0), -1)
cont = self.cont(flat)
if sty:
return cont
disc = self.disc(flat)
return {'cont': cont, 'disc': disc}
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def moco(self, x):
x = self.features(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
flat = x.view(x.size(0), -1)
cont = self.cont(flat)
return cont
def iic(self, x):
x = self.features(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
flat = x.view(x.size(0), -1)
disc = self.disc(flat)
return disc
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=False)]
else:
layers += [conv2d, nn.ReLU(inplace=False)]
in_channels = v
return nn.Sequential(*layers)
if __name__ == '__main__':
import torch
C = GuidingNet(64)
x_in = torch.randn(4, 3, 64, 64)
sty = C.moco(x_in)
cls = C.iic(x_in)
print(sty.shape, cls.shape)