-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab10.py
30 lines (25 loc) · 957 Bytes
/
lab10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from SheffUtils import JsonReader
from nltk.translate import bleu_score
from spacy.en import English
reader = JsonReader('./snli_1.0/snli_1.0_dev.jsonl')
nlp = English()
noLabel = 0.
correctLabel = 0.
wrongLabel = 0.
for snt in reader:
if snt['gold_label'] != '-':
s1 = nlp(snt['sentence1'])
s2 = nlp(snt['sentence2'])
a = bleu_score.sentence_bleu(s1[:].text, s2[:].text)
b = s1.similarity(s2)
c = float(min(len(s1),len(s2)))/float(max(len(s1),len(s2)))
avgScore = (a+b+c)/3.
clss = 'contradiction' if avgScore < 0.3 else 'entailment' if avgScore > 0.6 else 'neutral'
if clss == snt['gold_label']:
correctLabel += 1.
else:
wrongLabel += 1.
else:
noLabel += 1.
total = float(correctLabel + wrongLabel + noLabel)
print('correctLabel=%d wrongLabel=%d noLabel=%d total=%d, accy=%f'%(correctLabel, wrongLabel, noLabel,total,correctLabel/total))