-
Notifications
You must be signed in to change notification settings - Fork 16
/
move_to_lib.hlean
1517 lines (1215 loc) · 60 KB
/
move_to_lib.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
is_trunc function unit prod bool
attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor]
attribute ap1_gen [unfold 8 9 10]
attribute ap010 [unfold 7]
attribute tro_invo_tro [unfold 9] -- TODO: move
-- TODO: homotopy_of_eq and apd10 should be the same
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
universe variable u
namespace algebra
variables {A : Type} [add_ab_inf_group A]
definition add_sub_cancel_middle (a b : A) : a + (b - a) = b :=
!add.comm ⬝ !sub_add_cancel
end algebra
namespace eq
definition pathover_tr_pathover_idp_of_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'}
(q : b =[p] b') :
pathover_tr p b ⬝o pathover_idp_of_eq (tr_eq_of_pathover q) = q :=
begin induction q; reflexivity end
-- rename pathover_of_tr_eq_idp
definition pathover_of_tr_eq_idp' {A : Type} {B : A → Type} {a a₂ : A} (p : a = a₂) (b : B a) :
pathover_of_tr_eq idp = pathover_tr p b :=
by induction p; constructor
definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) :
H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H :=
begin apply eq_of_homotopy, intro x, apply inv_inv end
definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g')
(f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) :=
begin induction p, reflexivity end
definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type}
(f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b}
(p : g = g') (a : A) :
apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) :=
begin induction p, reflexivity end
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
begin
induction p₀, induction p, exact H
end
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
begin
induction p₀, induction p', induction p, exact H
end
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
begin
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
end
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
revert a₁' p' H a₁ p,
refine eq.rec_equiv f _,
exact eq.rec_equiv f
end
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{a₁}, f a₀ = g a₁ → Type}
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
begin
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
induction qr with q r, induction q'r' with q' r',
induction q, induction q',
induction r, induction r',
exact H
end
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{b}, f a = b → Type}
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
begin
revert b p, refine equiv_rect g _ _,
exact eq.rec_equiv_to f g p' H
end
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
{P : Π{b c}, g b = c → Type}
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
(p : g b = c) : P p :=
begin
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
end
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
-- begin
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
-- -- intro x, esimp,
-- end
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
-- idp
lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
(n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
homotopy_group_isomorphism_of_pequiv n f ⬝g
ghomotopy_group_ptrunc_of_le H B
definition fundamental_group_isomorphism {X : Type*} {G : Group}
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
definition equiv_pathover2 {A : Type} {a a' : A} (p : a = a')
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
(r : to_fun f =[p] to_fun g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply equiv.sigma_char },
{ apply sigma_pathover _ _ _ r, apply is_prop.elimo }
end
definition equiv_pathover_inv {A : Type} {a a' : A} (p : a = a')
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
(r : to_inv f =[p] to_inv g) : f =[p] g :=
begin
/- this proof is a bit weird, but it works -/
apply equiv_pathover2,
change f⁻¹ᶠ⁻¹ᶠ =[p] g⁻¹ᶠ⁻¹ᶠ,
apply apo (λ(a: A) (h : C a ≃ B a), h⁻¹ᶠ),
apply equiv_pathover2,
exact r
end
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z :=
by induction p; reflexivity
definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p) (f z) = f (transport C p z) :=
by induction p; reflexivity
definition eq_of_pathover_apo {A C : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'}
{p : a = a'} (g : Πa, B a → C) (q : b =[p] b') :
eq_of_pathover (apo g q) = apd011 g p q :=
by induction q; reflexivity
definition apd02 [unfold 8] {A : Type} {B : A → Type} (f : Πa, B a) {a a' : A} {p q : a = a'}
(r : p = q) : change_path r (apd f p) = apd f q :=
by induction r; reflexivity
definition pathover_ap_cono {A A' : Type} {a₁ a₂ a₃ : A}
{p₁ : a₁ = a₂} {p₂ : a₂ = a₃} (B' : A' → Type) (f : A → A')
{b₁ : B' (f a₁)} {b₂ : B' (f a₂)} {b₃ : B' (f a₃)}
(q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) :
pathover_ap B' f (q₁ ⬝o q₂) =
change_path !ap_con⁻¹ (pathover_ap B' f q₁ ⬝o pathover_ap B' f q₂) :=
by induction q₁; induction q₂; reflexivity
definition concato_eq_eq {A : Type} {B : A → Type} {a₁ a₂ : A} {p₁ : a₁ = a₂}
{b₁ : B a₁} {b₂ b₂' : B a₂} (r : b₁ =[p₁] b₂) (q : b₂ = b₂') :
r ⬝op q = r ⬝o pathover_idp_of_eq q :=
by induction q; reflexivity
definition ap_apd0111 {A₁ A₂ A₃ : Type} {B : A₁ → Type} {C : Π⦃a⦄, B a → Type} {a a₂ : A₁}
{b : B a} {b₂ : B a₂} {c : C b} {c₂ : C b₂}
(g : A₂ → A₃) (f : Πa b, C b → A₂) (Ha : a = a₂) (Hb : b =[Ha] b₂)
(Hc : c =[apd011 C Ha Hb] c₂) :
ap g (apd0111 f Ha Hb Hc) = apd0111 (λa b c, (g (f a b c))) Ha Hb Hc :=
by induction Hb; induction Hc using idp_rec_on; reflexivity
section squareover
variables {A A' : Type} {B : A → Type}
{a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ : A}
/-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
{p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
/-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
{s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
{b : B a}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀}
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂}
{b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄}
/-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₃₀ : b₂₀ =[p₃₀] b₄₀} /-b₄₀-/
/-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {q₃₂ : b₂₂ =[p₃₂] b₄₂} /-b₄₂-/
/-b₀₄-/ {q₁₄ : b₀₄ =[p₁₄] b₂₄} /-b₂₄-/ {q₃₄ : b₂₄ =[p₃₄] b₄₄} /-b₄₄-/
{q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-t₃₁-/ {q₄₁ : b₄₀ =[p₄₁] b₄₂}
{q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₃-/ {q₂₃ : b₂₂ =[p₂₃] b₂₄} /-t₃₃-/ {q₄₃ : b₄₂ =[p₄₃] b₄₄}
definition move_right_of_top_over {p : a₀₀ = a} {p' : a = a₂₀}
{s : square p p₁₂ p₀₁ (p' ⬝ p₂₁)} {q : b₀₀ =[p] b} {q' : b =[p'] b₂₀}
(t : squareover B (move_top_of_right s) (q ⬝o q') q₁₂ q₀₁ q₂₁) :
squareover B s q q₁₂ q₀₁ (q' ⬝o q₂₁) :=
begin induction q', induction q, induction q₂₁, exact t end
/- TODO: replace the version in the library by this -/
definition hconcato_pathover' {p : a₂₀ = a₂₂} {sp : p = p₂₁} {s : square p₁₀ p₁₂ p₀₁ p}
{q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B (s ⬝hp sp) q₁₀ q₁₂ q₀₁ q₂₁)
(r : change_path sp q = q₂₁) : squareover B s q₁₀ q₁₂ q₀₁ q :=
by induction sp; induction r; exact t₁₁
variables (s₁₁ q₀₁ q₁₀ q₂₁ q₁₂)
definition squareover_fill_t : Σ (q : b₀₀ =[p₁₀] b₂₀), squareover B s₁₁ q q₁₂ q₀₁ q₂₁ :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_b : Σ (q : b₀₂ =[p₁₂] b₂₂), squareover B s₁₁ q₁₀ q q₀₁ q₂₁ :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₀ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_l : Σ (q : b₀₀ =[p₀₁] b₀₂), squareover B s₁₁ q₁₀ q₁₂ q q₂₁ :=
begin
induction s₁₁, induction q₁₀ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_r : Σ (q : b₂₀ =[p₂₁] b₂₂) , squareover B s₁₁ q₁₀ q₁₂ q₀₁ q :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₁₀ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
end squareover
/- move this to types.eq, and replace the proof there -/
section
parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
(c₀ : code a₀)
include H c₀
protected definition encode2 {a : A} (q : a₀ = a) : code a :=
transport code q c₀
protected definition decode2' {a : A} (c : code a) : a₀ = a :=
have ⟨a₀, c₀⟩ = ⟨a, c⟩ :> Σa, code a, from !is_prop.elim,
this..1
protected definition decode2 {a : A} (c : code a) : a₀ = a :=
(decode2' c₀)⁻¹ ⬝ decode2' c
open sigma.ops
definition total_space_method2 (a : A) : (a₀ = a) ≃ code a :=
begin
fapply equiv.MK,
{ exact encode2 },
{ exact decode2 },
{ intro c, unfold [encode2, decode2, decode2'],
rewrite [is_prop_elim_self, ▸*, idp_con],
apply tr_eq_of_pathover, apply eq_pr2 },
{ intro q, induction q, esimp, apply con.left_inv, },
end
end
definition total_space_method2_refl {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
(c₀ : code a₀) : total_space_method2 a₀ code H c₀ a₀ idp = c₀ :=
begin
reflexivity
end
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
attribute hhconcat hvconcat [unfold_full]
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
homotopy.rfl
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
λx, !idp_con ⬝ ap_id (q x)
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
λx, !idp_con
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
λx, !ap_id
end hsquare
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) :
f ~2 f :=
λa b, idp
definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type}
{f : Πa (b : B a), C b} : f ~2 f :=
λa b, idp
definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type}
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f :=
λa b c, idp
definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type}
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f :=
λa b c, idp
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
by induction q; reflexivity
end eq open eq
namespace nat
protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
begin
induction s with s IH,
{ exact H0 },
{ exact IH (Hs s H0) }
end
/- have Hp : Πn, P n → P (pred n),
begin
intro n p, cases n with n,
{ exact p },
{ exact Hs n p }
end,
have H : Πn, P (s - n),
begin
intro n, induction n with n p,
{ exact H0 },
{ exact Hp (s - n) p }
end,
transport P (nat.sub_self s) (H s)-/
/- this generalizes iterate_commute -/
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
(h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h :=
begin
induction n with n q,
exact homotopy.rfl,
exact q ⬝htyh p
end
definition iterate_equiv2 {A : Type} {C : A → Type} (f : A → A) (h : Πa, C a ≃ C (f a))
(k : ℕ) (a : A) : C a ≃ C (f^[k] a) :=
begin induction k with k IH, reflexivity, exact IH ⬝e h (f^[k] a) end
/- replace proof of le_of_succ_le by this -/
definition le_step_left {n m : ℕ} (H : succ n ≤ m) : n ≤ m :=
by induction H with H m H'; exact le_succ n; exact le.step H'
/- TODO: make proof of le_succ_of_le simpler -/
definition nat.add_le_add_left2 {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
by induction H with m H H₂; reflexivity; exact le.step H₂
end nat
namespace trunc_index
open is_conn nat trunc is_trunc
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
by induction n with n p; reflexivity; exact ap succ p
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
begin
intro H, induction H with k H K,
{ apply le.tr_refl },
{ apply le.step K }
end
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
begin
induction n with n IH,
{ exact minus_two_add_plus_two k },
{ exact !succ_add_plus_two ⬝ ap succ IH}
end
end trunc_index
namespace int
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
le.intro (
calc n + 1 + -[1+ k] + k
= n + 1 + (-(k + 1)) + k : by reflexivity
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
... = n + 1 + (- 1 - k + k) : add.assoc
... = n + 1 + (- 1 + -k + k) : by reflexivity
... = n + 1 + (- 1 + (-k + k)) : add.assoc
... = n + 1 + (- 1 + 0) : add.left_inv
... = n + (1 + (- 1 + 0)) : add.assoc
... = n : int.add_zero)
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
le.intro (
calc -[1+ n] + 1 + k + n
= - (n + 1) + 1 + k + n : by reflexivity
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
... = -n + 0 + k + n : add.left_inv 1
... = -n + k + n : int.add_zero
... = k + -n + n : int.add_comm
... = k + (-n + n) : int.add_assoc
... = k + 0 : add.left_inv n
... = k : int.add_zero)
open trunc_index
/-
The function from integers to truncation indices which sends
positive numbers to themselves, and negative numbers to negative
2. In particular -1 is sent to -2, but since we only work with
pointed types, that doesn't matter for us -/
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
-- we also need the max -1 - function
definition maxm1 [unfold 1] : ℤ → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le -1 }
end
-- the is maxm1 minus 1
definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ :=
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 :=
begin
induction n with n n,
{ reflexivity },
{ reflexivity }
end
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le 0 }
end
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] :=
by cases m: exact id
definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
begin
induction n with n n,
{ induction m with m m,
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
{ exfalso, exact not_neg_succ_le_of_nat H }},
{ apply minus_two_le }
end
definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n :=
le.intro !sub_add_cancel
definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 :=
add_le_add_right (sub_nat_le n m) 1
definition sub_one_le (n : ℤ) : n - 1 ≤ n :=
sub_nat_le n 1
definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m :=
le.intro rfl
definition le_add_one (n : ℤ) : n ≤ n + 1:=
le_add_nat n 1
open trunc_index
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
begin
rewrite [-(maxm1_eq_succ n)],
induction n with n n,
{ induction k with k k,
{ induction k with k IH,
{ apply le.tr_refl },
{ exact succ_le_succ IH } },
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
(maxm2_le_maxm1 n) } },
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
rewrite [-(maxm1_eq_succ k)],
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
(maxm2_le_maxm1 k) }
end
end int open int
namespace pmap
/- rename: pmap_eta in namespace pointed -/
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
begin induction f, reflexivity end
end pmap
namespace lift
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
[H : is_trunc n A] : is_trunc n (plift A) :=
is_trunc_lift A n
definition lift_functor2 {A B C : Type} (f : A → B → C) (x : lift A) (y : lift B) : lift C :=
up (f (down x) (down y))
end lift
namespace trunc
open trunc_index
definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q :=
tua (equiv_of_is_prop (iff.mp H) (iff.mpr H))
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
is_contr_of_inhabited_prop pt
-- TODO: redefine loopn_ptrunc_pequiv
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity },
{ exact sorry }
end
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
end
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
is_trunc_trunc_of_is_trunc A n m
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
have is_trunc m A, from is_trunc_of_le A H1,
have is_trunc k A, from is_trunc_of_le A H2,
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
: ptrunc k X ≃* ptrunc l X :=
pequiv_ap (λ n, ptrunc n X) p
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
: ptrunc k X →* ptrunc l X :=
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
ptrunc.elim _ (ptr l X)
definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
begin cases n with n, exact -2, exact n end
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, exact p a },
{ exact to_homotopy_pt p }
end
definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
(ptrunc n A →* B) ≃ (A →* B) :=
begin
fapply equiv.MK,
{ intro g, exact g ∘* ptr n A },
{ exact ptrunc.elim n },
{ intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr },
{ intro g, apply eq_of_phomotopy,
exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝*
pcompose_pid g }
end
definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
ppmap (ptrunc n A) B ≃* ppmap A B :=
pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A)))
definition loopn_ptrunc_pequiv_nat (n : ℕ) (k : ℕ) (A : Type*) :
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
end trunc
namespace is_trunc
open trunc_index is_conn
lemma is_trunc_loopn_nat (m n : ℕ) (A : Type*) [H : is_trunc (n + m) A] :
is_trunc n (Ω[m] A) :=
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] :
is_trunc n (Ω A) :=
is_trunc_loop A n
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
transport (λk, is_trunc k A) p H
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
begin
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
refine is_conn.elim -1 _ _, exact H
end
lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A))
(H2 : is_conn m A) : is_trunc (m + n) A :=
begin
revert A H H2; induction m with m IH: intro A H H2,
{ rewrite [nat.zero_add], exact H },
rewrite [succ_add],
apply is_trunc_succ_succ_of_is_trunc_loop,
{ apply IH,
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
apply is_conn_loop },
exact is_conn_of_le _ (zero_le_of_nat (succ m))
end
lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A))
(H2 : is_conn m A) : is_trunc m A :=
is_trunc_of_is_trunc_loopn m 0 A H H2
end is_trunc
namespace sigma
open sigma.ops
definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a}
(P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type)
(IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p :=
begin
apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p),
generalize !sigma_eq_equiv p, esimp, intro q,
induction q with q₁ q₂, induction q₂, exact IH
end
definition ap_dpair_eq_dpair_pr {A A' : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (f : Πa, B a → A') (p : a = a') (q : b =[p] b')
: ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q :=
by induction q; reflexivity
definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a)
[H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 :=
!sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right
definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p :=
by induction p; reflexivity
definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 =
change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) :=
by induction p; reflexivity
definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type}
{a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') :
ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) :=
by induction q; reflexivity
definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type}
{a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') :
ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) :=
by induction q; reflexivity
definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a')
(q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) :=
by induction q; reflexivity
definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a')
(q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q :=
by induction p; induction q; reflexivity
definition sigma_eq_concato_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b₁ b₂ : B a'}
(p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' :=
by induction q'; reflexivity
-- open sigma.ops
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
-- sorry
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
-- begin
-- fapply equiv.MK,
-- { exact pathover_pr1 },
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
-- { intro q, induction q,
-- have c = c', from !is_prop.elim, induction this,
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
-- { esimp, generalize ⟨b, c⟩, intro x q, }
-- end
--rexact @(ap pathover_pr1) _ idpo _,
definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type}
{B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a))
(g : Πa, B a → B' (f a)) (x : Σa, B a) :
sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x :=
begin
reflexivity
end
definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type}
{f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f')
(k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x :=
sigma_eq (h x.1) (k x.1 x.2)
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type}
{B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type}
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
{g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)}
{g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)}
definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) :
hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂)
(sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) :=
λx, sigma_functor_compose g₂₁ g₁₀ x ⬝
sigma_functor_homotopy h k x ⬝
(sigma_functor_compose g₁₂ g₀₁ x)⁻¹
definition sigma_equiv_of_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type} {f : X → Y}
(H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) :=
⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩
definition sigma_equiv_of_is_embedding_left [constructor] {X Y : Type} {P : Y → Type} [HP : Πy, is_prop (P y)]
{f : X → Y} (Hf : is_embedding f) (H : Πy, P y → fiber f y) : (Σy, P y) ≃ Σx, P (f x) :=
begin
apply equiv.MK (sigma_equiv_of_embedding_left_fun H) (sigma_functor f (λa, id)),
{ intro v, induction v with x p, esimp [sigma_equiv_of_embedding_left_fun],
fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p),
apply is_prop.elimo },
{ intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p), apply is_prop.elimo },
end
end sigma open sigma
namespace group
definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G)
(p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H :=
isomorphism.mk φ (adjointify φ ψ p q)
protected definition homomorphism.sigma_char [constructor]
(A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f :=
begin
fapply equiv.MK,
{intro F, exact ⟨F, _⟩ },
{intro p, cases p with f H, exact (homomorphism.mk f H) },
{intro p, cases p, reflexivity },
{intro F, cases F, reflexivity },
end
definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a')
{B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a')
(r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply homomorphism.sigma_char },
{ fapply sigma_pathover, exact r, apply is_prop.elimo }
end
protected definition isomorphism.sigma_char [constructor]
(A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f :=
begin
fapply equiv.MK,
{intro F, exact ⟨F, _⟩ },
{intro p, cases p with f H, exact (isomorphism.mk f H) },
{intro p, cases p, reflexivity },
{intro F, cases F, reflexivity },
end
definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a')
{B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a')
(r : pathover (λa, B a → C a) f p g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply isomorphism.sigma_char },
{ fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo }
end
-- definition is_equiv_isomorphism
-- some extra instances for type class inference
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
definition pgroup_of_Group (X : Group) : pgroup X :=
pgroup_of_group _ idp
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
isomorphism_of_eq (ap F p)
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
begin
reflexivity
end
open option
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
| (some x) := G x
| none := trivial_ab_group_lift
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
(h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) :=
begin
apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x',
induction x with a, induction x' with a', apply ap tr, exact h a a'
end
end group open group
namespace fiber
open pointed sigma
definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) :=
is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end
definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} {b : B} {b' : B'}
(g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') (x : fiber f b) : fiber f' b' :=
fiber.mk (g (point x)) (H (point x) ⬝ ap h (point_eq x) ⬝ p)
definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'}
(g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' :=
pmap.mk (fiber_functor g h H (respect_pt h))
begin
fapply fiber_eq,
exact respect_pt g,
exact !con.assoc ⬝ to_homotopy_pt H
end
-- TODO: use this in pfiber_pequiv_of_phomotopy
definition fiber_equiv_of_homotopy {A B : Type} {f g : A → B} (h : f ~ g) (b : B)
: fiber f b ≃ fiber g b :=
begin
refine (fiber.sigma_char f b ⬝e _ ⬝e (fiber.sigma_char g b)⁻¹ᵉ),
apply sigma_equiv_sigma_right, intros a,
apply equiv_eq_closed_left, apply h
end
definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} (h : A ≃ C)
(k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d :=
calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose
... ≃ fiber (k ∘ f) d : transport_fiber_equiv (k ∘ f) p
... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d
... ≃ fiber g d : fiber.equiv_precompose
definition fiber_equiv_of_triangle {A B C : Type} {b : B} {f : A → B} {g : C → B} (h : A ≃ C)
(s : f ~ g ∘ h) : fiber f b ≃ fiber g b :=
fiber_equiv_of_square h erfl s idp
definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) :=
λa, is_trunc_of_is_contr _ _
definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) :=
λa, _
open sigma.ops is_conn
definition fiber_compose {A B C : Type} (g : B → C) (f : A → B) (c : C) :
fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) :=
begin
fapply equiv.MK,
{ intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ },
{ intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) },
{ intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q,
induction p, esimp at q, induction q, reflexivity },
{ intro x, induction x with a p, induction p, reflexivity }
end
definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
(Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) :=
λc, is_trunc_equiv_closed_rev k (fiber_compose g f c)
definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}