-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathgraded.hlean
719 lines (578 loc) · 31.3 KB
/
graded.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/- Graded (left-) R-modules for a ring R. -/
-- Author: Floris van Doorn
import .left_module .direct_sum .submodule --..heq
open is_trunc algebra eq left_module pointed function equiv is_equiv prod group sigma sigma.ops nat
trunc_index property
namespace left_module
definition graded [reducible] (str : Type) (I : Type) : Type := I → str
definition graded_module [reducible] (R : Ring) : Type → Type := graded (LeftModule R)
-- TODO: We can (probably) make I a type everywhere
variables {R : Ring} {I : AddGroup} {M M₁ M₂ M₃ : graded_module R I}
/-
morphisms between graded modules.
The definition is unconventional in two ways:
(1) The degree is determined by an endofunction instead of a element of I, which is equal to adding
i on the right. This is more flexible. For example, the
composition of two graded module homomorphisms φ₂ and φ₁ with degrees i₂ and i₁ has type
M₁ i → M₂ ((i + i₁) + i₂).
However, a homomorphism with degree i₁ + i₂ must have type
M₁ i → M₂ (i + (i₁ + i₂)),
which means that we need to insert a transport. With endofunctions this is not a problem:
λi, (i + i₁) + i₂
is a perfectly fine degree of a map
(2) Since we cannot eliminate all possible transports, we don't define a homomorphism as function
M₁ i →lm M₂ (i + deg f) or M₁ i →lm M₂ (deg f i)
but as a function taking a path as argument. Specifically, for every path
deg f i = j
we get a function M₁ i → M₂ j.
-/
definition graded_hom_of_deg (d : I ≃ I) (M₁ M₂ : graded_module R I) : Type :=
Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j
definition gmd_constant [constructor] (d : I ≃ I) (M₁ M₂ : graded_module R I) : graded_hom_of_deg d M₁ M₂ :=
λi j p, lm_constant (M₁ i) (M₂ j)
definition gmd0 [constructor] {d : I ≃ I} {M₁ M₂ : graded_module R I} : graded_hom_of_deg d M₁ M₂ :=
gmd_constant d M₁ M₂
structure graded_hom (M₁ M₂ : graded_module R I) : Type :=
mk' :: (d : I ≃ I)
(deg_eq : Π(i : I), d i = i + d 0)
(fn' : graded_hom_of_deg d M₁ M₂)
definition deg_eq_id (i : I) : erfl i = i + erfl 0 :=
!add_zero⁻¹
definition deg_eq_inv {d : I ≃ I} (pd : Π(i : I), d i = i + d 0) (i : I) : d⁻¹ᵉ i = i + d⁻¹ᵉ 0 :=
inv_eq_of_eq (!pd ⬝ !neg_add_cancel_right)⁻¹ ⬝
ap (λx, i + x) ((to_left_inv d _)⁻¹ ⬝ ap d⁻¹ᵉ (!pd ⬝ add.left_inv (d 0)))
definition deg_eq_con {d₁ d₂ : I ≃ I} (pd₁ : Π(i : I), d₁ i = i + d₁ 0) (pd₂ : Π(i : I), d₂ i = i + d₂ 0)
(i : I) : (d₁ ⬝e d₂) i = i + (d₁ ⬝e d₂) 0 :=
ap d₂ !pd₁ ⬝ !pd₂ ⬝ !add.assoc ⬝ ap (λx, i + x) !pd₂⁻¹
notation M₁ ` →gm ` M₂ := graded_hom M₁ M₂
abbreviation deg [unfold 5] := @graded_hom.d
abbreviation deg_eq [unfold 5] := @graded_hom.deg_eq
postfix ` ↘`:max := graded_hom.fn' -- there is probably a better character for this? Maybe ↷?
definition graded_hom_fn [reducible] [unfold 5] [coercion] (f : M₁ →gm M₂) (i : I) : M₁ i →lm M₂ (deg f i) :=
f ↘ idp
definition graded_hom_fn_out [reducible] [unfold 5] (f : M₁ →gm M₂) (i : I) : M₁ ((deg f)⁻¹ᵉ i) →lm M₂ i :=
f ↘ (to_right_inv (deg f) i)
infix ` ← `:max := graded_hom_fn_out -- todo: change notation
-- definition graded_hom_fn_out_rec (f : M₁ →gm M₂)
-- (P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type)
-- (H : Πi m, P (right_inv (deg f) i) m (f ← i m)) {i j : I}
-- (p : deg f i = j) (m : M₁ i) (n : M₂ j) : P p m (f ↘ p m) :=
-- begin
-- revert i j p m n, refine equiv_rect (deg f)⁻¹ᵉ _ _, intro i,
-- refine eq.rec_to (right_inv (deg f) i) _,
-- intro m n, exact H i m
-- end
-- definition graded_hom_fn_rec (f : M₁ →gm M₂)
-- {P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type}
-- (H : Πi m, P idp m (f i m)) ⦃i j : I⦄
-- (p : deg f i = j) (m : M₁ i) : P p m (f ↘ p m) :=
-- begin
-- induction p, apply H
-- end
-- definition graded_hom_fn_out_rec (f : M₁ →gm M₂)
-- {P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type}
-- (H : Πi m, P idp m (f i m)) ⦃i : I⦄ (m : M₁ ((deg f)⁻¹ᵉ i)) :
-- P (right_inv (deg f) i) m (f ← i m) :=
-- graded_hom_fn_rec f H (right_inv (deg f) i) m
-- definition graded_hom_fn_out_rec_simple (f : M₁ →gm M₂)
-- {P : Π{j} (n : M₂ j), Type}
-- (H : Πi m, P (f i m)) ⦃i : I⦄ (m : M₁ ((deg f)⁻¹ᵉ i)) :
-- P (f ← i m) :=
-- graded_hom_fn_out_rec f H m
definition graded_hom.mk [constructor] (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ i →lm M₂ (d i)) : M₁ →gm M₂ :=
graded_hom.mk' d pd (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
definition graded_hom.mk_out [constructor] (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ :=
graded_hom.mk' d pd (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
definition graded_hom.mk_out' [constructor] (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ (d i) →lm M₂ i) : M₁ →gm M₂ :=
graded_hom.mk' d⁻¹ᵉ (deg_eq_inv pd) (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
definition graded_hom.mk_out_in [constructor] (d₁ d₂ : I ≃ I)
(pd₁ : Π(i : I), d₁ i = i + d₁ 0) (pd₂ : Π(i : I), d₂ i = i + d₂ 0)
(fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) : M₁ →gm M₂ :=
graded_hom.mk' (d₁⁻¹ᵉ ⬝e d₂) (deg_eq_con (deg_eq_inv pd₁) pd₂)
(λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn (d₁⁻¹ᵉ i) ∘lm homomorphism_of_eq (ap M₁ (to_right_inv d₁ i)⁻¹))
definition graded_hom_eq_transport (f : M₁ →gm M₂) {i j : I} (p : deg f i = j) (m : M₁ i) :
f ↘ p m = transport M₂ p (f i m) :=
by induction p; reflexivity
definition graded_hom_mk_refl (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ i →lm M₂ (d i)) {i : I} (m : M₁ i) : graded_hom.mk d pd fn i m = fn i m :=
by reflexivity
lemma graded_hom_mk_out'_destruct (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ (d i) →lm M₂ i) {i : I} (m : M₁ (d i)) :
graded_hom.mk_out' d pd fn ↘ (left_inv d i) m = fn i m :=
begin
unfold [graded_hom.mk_out'],
apply ap (λx, fn i (cast x m)),
refine !ap_compose⁻¹ ⬝ ap02 _ _,
apply is_set.elim --note: we can also prove this if I is not a set
end
lemma graded_hom_mk_out_destruct (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) {i : I} (m : M₁ (d⁻¹ i)) :
graded_hom.mk_out d pd fn ↘ (right_inv d i) m = fn i m :=
begin
rexact graded_hom_mk_out'_destruct d⁻¹ᵉ (deg_eq_inv pd) fn m
end
lemma graded_hom_mk_out_in_destruct (d₁ : I ≃ I) (d₂ : I ≃ I)
(pd₁ : Π(i : I), d₁ i = i + d₁ 0) (pd₂ : Π(i : I), d₂ i = i + d₂ 0)
(fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) {i : I} (m : M₁ (d₁ i)) :
graded_hom.mk_out_in d₁ d₂ pd₁ pd₂ fn ↘ (ap d₂ (left_inv d₁ i)) m = fn i m :=
begin
unfold [graded_hom.mk_out_in],
rewrite [adj d₁, -ap_inv, - +ap_compose, ],
refine cast_fn_cast_square fn _ _ !con.left_inv m
end
definition graded_hom_square (f : M₁ →gm M₂) {i₁ i₂ j₁ j₂ : I} (p : deg f i₁ = j₁) (q : deg f i₂ = j₂)
(r : i₁ = i₂) (s : j₁ = j₂) :
hsquare (f ↘ p) (f ↘ q) (homomorphism_of_eq (ap M₁ r)) (homomorphism_of_eq (ap M₂ s)) :=
begin
induction p, induction q, induction r,
have rfl = s, from !is_set.elim, induction this,
exact homotopy.rfl
end
variable (I) -- for some reason Lean needs to know what I is when applying this lemma
definition graded_hom_eq_zero {f : M₁ →gm M₂} {i j k : I} {q : deg f i = j} {p : deg f i = k}
(m : M₁ i) (r : f ↘ q m = 0) : f ↘ p m = 0 :=
have f ↘ p m = transport M₂ (q⁻¹ ⬝ p) (f ↘ q m), begin induction p, induction q, reflexivity end,
this ⬝ ap (transport M₂ (q⁻¹ ⬝ p)) r ⬝ tr_eq_of_pathover (apd (λi, 0) (q⁻¹ ⬝ p))
variable {I}
definition graded_hom_change_image {f : M₁ →gm M₂} {i j k : I} {m : M₂ k} (p : deg f i = k)
(q : deg f j = k) (h : image (f ↘ p) m) : image (f ↘ q) m :=
begin
have Σ(r : i = j), ap (deg f) r = p ⬝ q⁻¹,
from ⟨inj (deg f) (p ⬝ q⁻¹), !ap_inj'⟩,
induction this with r s, induction r, induction q, esimp at s, induction s, exact h
end
definition graded_hom_codom_rec {f : M₁ →gm M₂} {j : I} {P : Π⦃i⦄, deg f i = j → Type}
{i i' : I} (p : deg f i = j) (h : P p) (q : deg f i' = j) : P q :=
begin
have Σ(r : i = i'), ap (deg f) r = p ⬝ q⁻¹,
from ⟨inj (deg f) (p ⬝ q⁻¹), !ap_inj'⟩,
induction this with r s, induction r, induction q, esimp at s, induction s, exact h
end
variables {f' : M₂ →gm M₃} {f g h : M₁ →gm M₂}
definition graded_hom_compose [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : M₁ →gm M₃ :=
graded_hom.mk' (deg f ⬝e deg f') (deg_eq_con (deg_eq f) (deg_eq f')) (λi j p, f' ↘ p ∘lm f i)
infixr ` ∘gm `:75 := graded_hom_compose
definition graded_hom_compose_fn (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I) (m : M₁ i) :
(f' ∘gm f) i m = f' (deg f i) (f i m) :=
by reflexivity
definition graded_hom_compose_fn_ext (f' : M₂ →gm M₃) (f : M₁ →gm M₂) ⦃i j k : I⦄
(p : deg f i = j) (q : deg f' j = k) (r : (deg f ⬝e deg f') i = k) (s : ap (deg f') p ⬝ q = r)
(m : M₁ i) : ((f' ∘gm f) ↘ r) m = (f' ↘ q) (f ↘ p m) :=
by induction s; induction q; induction p; reflexivity
definition graded_hom_compose_fn_out (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I)
(m : M₁ ((deg f ⬝e deg f')⁻¹ᵉ i)) : (f' ∘gm f) ← i m = f' ← i (f ← ((deg f')⁻¹ᵉ i) m) :=
graded_hom_compose_fn_ext f' f _ _ _ idp m
-- the following composition might be useful if you want tight control over the paths to which f and f' are applied
definition graded_hom_compose_ext [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂)
(d : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), I)
(pf : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), deg f i = d p)
(pf' : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), deg f' (d p) = j) : M₁ →gm M₃ :=
graded_hom.mk' (deg f ⬝e deg f') (deg_eq_con (deg_eq f) (deg_eq f')) (λi j p, (f' ↘ (pf' p)) ∘lm (f ↘ (pf p)))
variable (M)
definition graded_hom_id [constructor] [refl] : M →gm M :=
graded_hom.mk erfl deg_eq_id (λi, lmid)
variable {M}
abbreviation gmid [constructor] := graded_hom_id M
/- reindexing a graded morphism along a group homomorphism.
We could also reindex along an affine transformation, but don't prove that here
-/
definition graded_hom_reindex [constructor] {J : AddGroup} (e : J ≃g I) (f : M₁ →gm M₂) :
(λy, M₁ (e y)) →gm (λy, M₂ (e y)) :=
graded_hom.mk' (group.equiv_of_isomorphism e ⬝e deg f ⬝e (group.equiv_of_isomorphism e)⁻¹ᵉ)
begin intro i, exact ap e⁻¹ᵍ (deg_eq f (e i)) ⬝ respect_add e⁻¹ᵍ _ _ ⬝
ap011 add (to_left_inv (group.equiv_of_isomorphism e) i)
(ap (e⁻¹ᵍ ∘ deg f) (respect_zero e)⁻¹) end
(λy₁ y₂ p, f ↘ (to_eq_of_inv_eq (group.equiv_of_isomorphism e) p))
definition gm_constant [constructor] (M₁ M₂ : graded_module R I) (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(pd : Π(i : I), d i = i + d 0) : M₁ →gm M₂ :=
graded_hom.mk' d pd (gmd_constant d M₁ M₂)
definition is_surjective_graded_hom_compose ⦃x z⦄
(f' : M₂ →gm M₃) (f : M₁ →gm M₂) (p : deg f' (deg f x) = z)
(H' : Π⦃y⦄ (q : deg f' y = z), is_surjective (f' ↘ q))
(H : Π⦃y⦄ (q : deg f x = y), is_surjective (f ↘ q)) : is_surjective ((f' ∘gm f) ↘ p) :=
begin
induction p,
apply is_surjective_compose (f' (deg f x)) (f x),
apply H', apply H
end
structure graded_iso (M₁ M₂ : graded_module R I) : Type :=
mk' :: (to_hom : M₁ →gm M₂)
(is_equiv_to_hom : Π⦃i j⦄ (p : deg to_hom i = j), is_equiv (to_hom ↘ p))
infix ` ≃gm `:25 := graded_iso
attribute graded_iso.to_hom [coercion]
attribute graded_iso._trans_of_to_hom [unfold 5]
definition is_equiv_graded_iso [instance] [priority 1010] (φ : M₁ ≃gm M₂) (i : I) :
is_equiv (φ i) :=
graded_iso.is_equiv_to_hom φ idp
definition isomorphism_of_graded_iso' [constructor] (φ : M₁ ≃gm M₂) {i j : I} (p : deg φ i = j) :
M₁ i ≃lm M₂ j :=
isomorphism.mk (φ ↘ p) !graded_iso.is_equiv_to_hom
definition isomorphism_of_graded_iso [constructor] (φ : M₁ ≃gm M₂) (i : I) :
M₁ i ≃lm M₂ (deg φ i) :=
isomorphism.mk (φ i) _
definition isomorphism_of_graded_iso_out [constructor] (φ : M₁ ≃gm M₂) (i : I) :
M₁ ((deg φ)⁻¹ᵉ i) ≃lm M₂ i :=
isomorphism_of_graded_iso' φ (to_right_inv (deg φ) i)
protected definition graded_iso.mk [constructor] (d : I ≃ I) (pd : Π(i : I), d i = i + d 0)
(φ : Πi, M₁ i ≃lm M₂ (d i)) : M₁ ≃gm M₂ :=
begin
apply graded_iso.mk' (graded_hom.mk d pd φ),
intro i j p, induction p,
exact to_is_equiv (equiv_of_isomorphism (φ i)),
end
protected definition graded_iso.mk_out [constructor] (d : I ≃ I)
(pd : Π(i : I), d i = i + d 0) (φ : Πi, M₁ (d⁻¹ i) ≃lm M₂ i) :
M₁ ≃gm M₂ :=
begin
apply graded_iso.mk' (graded_hom.mk_out d pd φ),
intro i j p, esimp,
exact @is_equiv_compose _ _ _ _ _ !is_equiv_cast _,
end
definition graded_iso_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂)
: M₁ ≃gm M₂ :=
graded_iso.mk erfl deg_eq_id (λi, isomorphism_of_eq (p i))
-- definition to_gminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ :=
-- graded_hom.mk_out (deg φ)⁻¹ᵉ
-- abstract begin
-- intro i, apply isomorphism.to_hom, symmetry,
-- apply isomorphism_of_graded_iso φ
-- end end
variable (M)
definition graded_iso.refl [refl] [constructor] : M ≃gm M :=
graded_iso.mk equiv.rfl deg_eq_id (λi, isomorphism.rfl)
variable {M}
definition graded_iso.rfl [refl] [constructor] : M ≃gm M := graded_iso.refl M
definition graded_iso.symm [symm] [constructor] (φ : M₁ ≃gm M₂) : M₂ ≃gm M₁ :=
graded_iso.mk_out (deg φ)⁻¹ᵉ (deg_eq_inv (deg_eq φ)) (λi, (isomorphism_of_graded_iso φ i)⁻¹ˡᵐ)
definition graded_iso.trans [trans] [constructor] (φ : M₁ ≃gm M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
graded_iso.mk (deg φ ⬝e deg ψ) (deg_eq_con (deg_eq φ) (deg_eq ψ))
(λi, isomorphism_of_graded_iso φ i ⬝lm isomorphism_of_graded_iso ψ (deg φ i))
definition graded_iso.eq_trans [trans] [constructor]
{M₁ M₂ M₃ : graded_module R I} (φ : M₁ ~ M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
proof graded_iso.trans (graded_iso_of_eq φ) ψ qed
definition graded_iso.trans_eq [trans] [constructor]
{M₁ M₂ M₃ : graded_module R I} (φ : M₁ ≃gm M₂) (ψ : M₂ ~ M₃) : M₁ ≃gm M₃ :=
graded_iso.trans φ (graded_iso_of_eq ψ)
postfix `⁻¹ᵉᵍᵐ`:(max + 1) := graded_iso.symm
infixl ` ⬝egm `:75 := graded_iso.trans
infixl ` ⬝egmp `:75 := graded_iso.trans_eq
infixl ` ⬝epgm `:75 := graded_iso.eq_trans
definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ →gm M₂ :=
proof graded_iso_of_eq p qed
definition fooff {I : Set} (P : I → Type) {i j : I} (M : P i) (N : P j) := unit
notation M ` ==[`:50 P:0 `] `:0 N:50 := fooff P M N
definition graded_homotopy (f g : M₁ →gm M₂) : Type :=
Π⦃i j k⦄ (p : deg f i = j) (q : deg g i = k) (m : M₁ i), f ↘ p m ==[λ(i : Set_of_AddGroup I), M₂ i] g ↘ q m
-- mk' :: (hd : deg f ~ deg g)
-- (hfn : Π⦃i j : I⦄ (pf : deg f i = j) (pg : deg g i = j), f ↘ pf ~ g ↘ pg)
infix ` ~gm `:50 := graded_homotopy
-- definition graded_homotopy.mk2 (hd : deg f ~ deg g) (hfn : Πi m, f i m =[hd i] g i m) : f ~gm g :=
-- graded_homotopy.mk' hd
-- begin
-- intro i j pf pg m, induction (is_set.elim (hd i ⬝ pg) pf), induction pg, esimp,
-- exact graded_hom_eq_transport f (hd i) m ⬝ tr_eq_of_pathover (hfn i m),
-- end
definition graded_homotopy.mk (h : Πi m, f i m ==[λ(i : Set_of_AddGroup I), M₂ i] g i m) : f ~gm g :=
begin
intros i j k p q m, induction q, induction p, constructor --exact h i m
end
-- definition graded_hom_compose_out {d₁ d₂ : I ≃ I} (f₂ : Πi, M₂ i →lm M₃ (d₂ i))
-- (f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk d₂ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm
-- graded_hom.mk_out_in d₁⁻¹ᵉ d₂ _ :=
-- _
-- definition graded_hom_out_in_compose_out {d₁ d₂ d₃ : I ≃ I} (f₂ : Πi, M₂ (d₂ i) →lm M₃ (d₃ i))
-- (f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk_out_in d₂ d₃ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm
-- graded_hom.mk_out_in (d₂ ⬝e d₁⁻¹ᵉ) d₃ (λi, f₂ i ∘lm (f₁ (d₂ i))) :=
-- begin
-- apply graded_homotopy.mk, intro i m, exact sorry
-- end
-- definition graded_hom_out_in_rfl {d₁ d₂ : I ≃ I} (f : Πi, M₁ i →lm M₂ (d₂ i))
-- (p : Πi, d₁ i = i) :
-- graded_hom.mk_out_in d₁ d₂ (λi, sorry) ~gm graded_hom.mk d₂ f :=
-- begin
-- apply graded_homotopy.mk, intro i m, exact sorry
-- end
-- definition graded_homotopy.trans (h₁ : f ~gm g) (h₂ : g ~gm h) : f ~gm h :=
-- begin
-- exact sorry
-- end
-- postfix `⁻¹ᵍᵐ`:(max + 1) := graded_iso.symm
--infixl ` ⬝gm `:75 := graded_homotopy.trans
-- infixl ` ⬝gmp `:75 := graded_iso.trans_eq
-- infixl ` ⬝pgm `:75 := graded_iso.eq_trans
-- definition graded_homotopy_of_deg (d : I ≃ I) (f g : graded_hom_of_deg d M₁ M₂) : Type :=
-- Π⦃i j : I⦄ (p : d i = j), f p ~ g p
-- notation f ` ~[`:50 d:0 `] `:0 g:50 := graded_homotopy_of_deg d f g
-- variables {d : I ≃ I} {f₁ f₂ : graded_hom_of_deg d M₁ M₂}
-- definition graded_homotopy_of_deg.mk [constructor] (h : Πi, f₁ (idpath (d i)) ~ f₂ (idpath (d i))) :
-- f₁ ~[d] f₂ :=
-- begin
-- intro i j p, induction p, exact h i
-- end
-- definition graded_homotopy.mk_out [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I)
-- (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ :=
-- graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p)))
-- definition is_gconstant (f : M₁ →gm M₂) : Type :=
-- f↘ ~[deg f] gmd0
definition compose_constant (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : Type :=
Π⦃i j k : I⦄ (p : deg f i = j) (q : deg f' j = k) (m : M₁ i), f' ↘ q (f ↘ p m) = 0
definition compose_constant.mk (h : Πi m, f' (deg f i) (f i m) = 0) : compose_constant f' f :=
by intros; induction p; induction q; exact h i m
definition compose_constant.elim (h : compose_constant f' f) (i : I) (m : M₁ i) : f' (deg f i) (f i m) = 0 :=
h idp idp m
definition is_gconstant (f : M₁ →gm M₂) : Type :=
Π⦃i j : I⦄ (p : deg f i = j) (m : M₁ i), f ↘ p m = 0
definition is_gconstant.mk (h : Πi m, f i m = 0) : is_gconstant f :=
by intros; induction p; exact h i m
definition is_gconstant.elim (h : is_gconstant f) (i : I) (m : M₁ i) : f i m = 0 :=
h idp m
/- direct sum of graded R-modules -/
variables {J : Set} (N : graded_module R J)
definition dirsum' : AddAbGroup :=
group.dirsum (λj, AddAbGroup_of_LeftModule (N j))
variable {N}
definition dirsum_smul [constructor] (r : R) : dirsum' N →a dirsum' N :=
dirsum_functor (λi, smul_homomorphism (N i) r)
definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) :
dirsum_smul (r + s) n = dirsum_smul r n + dirsum_smul s n :=
begin
refine dirsum_functor_homotopy _ _ _ n ⬝ !dirsum_functor_mul⁻¹,
intro i ni, exact to_smul_right_distrib r s ni
end
definition dirsum_mul_smul' (r s : R) (n : dirsum' N) :
dirsum_smul (r * s) n = (dirsum_smul r ∘a dirsum_smul s) n :=
begin
refine dirsum_functor_homotopy _ _ _ n ⬝ (dirsum_functor_compose _ _ n)⁻¹ᵖ,
intro i ni, exact to_mul_smul r s ni
end
definition dirsum_mul_smul (r s : R) (n : dirsum' N) :
dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) :=
proof dirsum_mul_smul' r s n qed
definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n :=
begin
refine dirsum_functor_homotopy _ _ _ n ⬝ !dirsum_functor_gid,
intro i ni, exact to_one_smul ni
end
definition dirsum : LeftModule R :=
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n)
proof (λr, homomorphism.addstruct (dirsum_smul r)) qed
proof dirsum_smul_right_distrib qed
proof dirsum_mul_smul qed
proof dirsum_one_smul qed
/- graded variants of left-module constructions -/
definition graded_submodule [constructor] (S : Πi, property (M i)) [Π i, is_submodule (M i) (S i)] :
graded_module R I :=
λi, submodule (S i)
definition graded_submodule_incl [constructor] (S : Πi, property (M i)) [H : Π i, is_submodule (M i) (S i)] :
graded_submodule S →gm M :=
have Π i, is_submodule (M (to_fun erfl i)) (S i), from H,
graded_hom.mk erfl deg_eq_id (λi, submodule_incl (S i))
definition graded_hom_lift [constructor] (S : Πi, property (M₂ i)) [Π i, is_submodule (M₂ i) (S i)]
(φ : M₁ →gm M₂)
(h : Π(i : I) (m : M₁ i), φ i m ∈ S (deg φ i)) : M₁ →gm graded_submodule S :=
graded_hom.mk (deg φ) (deg_eq φ) (λi, hom_lift (φ i) (h i))
definition graded_submodule_functor [constructor]
{S : Πi, property (M₁ i)} [Π i, is_submodule (M₁ i) (S i)]
{T : Πi, property (M₂ i)} [Π i, is_submodule (M₂ i) (T i)]
(φ : M₁ →gm M₂)
(h : Π(i : I) (m : M₁ i), S i m → T (deg φ i) (φ i m)) :
graded_submodule S →gm graded_submodule T :=
graded_hom.mk (deg φ) (deg_eq φ) (λi, submodule_functor (φ i) (h i))
definition graded_image (f : M₁ →gm M₂) : graded_module R I :=
λi, image_module (f ← i)
lemma graded_image_lift_lemma (f : M₁ →gm M₂) {i j: I} (p : deg f i = j) (m : M₁ i) :
image (f ← j) (f ↘ p m) :=
graded_hom_change_image p (right_inv (deg f) j) (image.mk m idp)
definition graded_image_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image f :=
graded_hom.mk' (deg f) (deg_eq f) (λi j p, hom_lift (f ↘ p) (graded_image_lift_lemma f p))
definition graded_image_lift_destruct (f : M₁ →gm M₂) {i : I}
(m : M₁ ((deg f)⁻¹ᵉ i)) : graded_image_lift f ← i m = image_lift (f ← i) m :=
subtype_eq idp
definition graded_image.rec {f : M₁ →gm M₂} {i : I} {P : graded_image f (deg f i) → Type}
[h : Πx, is_prop (P x)] (H : Πm, P (graded_image_lift f i m)) : Πm, P m :=
begin
assert H₂ : Πi' (p : deg f i' = deg f i) (m : M₁ i'),
P ⟨f ↘ p m, graded_hom_change_image p _ (image.mk m idp)⟩,
{ refine eq.rec_equiv_symm (deg f) _, intro m,
refine transport P _ (H m), apply subtype_eq, reflexivity },
refine @total_image.rec _ _ _ _ h _, intro m,
refine transport P _ (H₂ _ (right_inv (deg f) (deg f i)) m),
apply subtype_eq, reflexivity
end
definition image_graded_image_lift {f : M₁ →gm M₂} {i j : I} (p : deg f i = j)
(m : graded_image f j)
(h : image (f ↘ p) m.1) : image (graded_image_lift f ↘ p) m :=
begin
induction p,
revert m h, refine total_image.rec _, intro m h,
induction h with n q, refine image.mk n (subtype_eq q)
end
lemma is_surjective_graded_image_lift ⦃x y⦄ (f : M₁ →gm M₂)
(p : deg f x = y) : is_surjective (graded_image_lift f ↘ p) :=
begin
intro m, apply image_graded_image_lift, exact graded_hom_change_image (right_inv (deg f) y) _ m.2
end
definition graded_image_elim_helper {f : M₁ →gm M₂} (g : M₁ →gm M₃)
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) (i : I) : graded_image f (deg f i) →lm M₃ (deg g i) :=
begin
apply image_elim (g ↘ (ap (deg g) (to_left_inv (deg f) i))),
intro m p,
refine graded_hom_eq_zero I m (h _),
exact graded_hom_eq_zero I m p
end
definition graded_image_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃)
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
graded_image f →gm M₃ :=
graded_hom.mk_out_in (deg f) (deg g) (deg_eq f) (deg_eq g) (graded_image_elim_helper g h)
lemma graded_image_elim_destruct {f : M₁ →gm M₂} {g : M₁ →gm M₃}
(h : Π⦃i m⦄, f i m = 0 → g i m = 0) {i j k : I}
(p' : deg f i = j) (p : deg g ((deg f)⁻¹ᵉ j) = k)
(q : deg g i = k) (r : ap (deg g) (to_left_inv (deg f) i) ⬝ q = ap ((deg f)⁻¹ᵉ ⬝e deg g) p' ⬝ p)
(m : M₁ i) : graded_image_elim g h ↘ p (graded_image_lift f ↘ p' m) =
g ↘ q m :=
begin
revert i j p' k p q r m,
refine equiv_rect (deg f ⬝e (deg f)⁻¹ᵉ) _ _,
intro i, refine eq.rec_grading _ (deg f) (right_inv (deg f) (deg f i)) _,
intro k p q r m,
assert r' : q = p,
{ refine cancel_left _ (r ⬝ whisker_right _ _), refine !ap_compose ⬝ ap02 (deg g) _,
exact !adj_inv⁻¹ },
induction r', clear r,
revert k q m, refine eq.rec_to (ap (deg g) (to_left_inv (deg f) i)) _, intro m,
refine graded_hom_mk_out_in_destruct (deg f) (deg g) (deg_eq f) (deg_eq g)
(graded_image_elim_helper g h) (graded_image_lift f ← (deg f i) m) ⬝ _,
refine ap (image_elim _ _) !graded_image_lift_destruct ⬝ _, reflexivity
end
/- alternative (easier) definition of graded_image with "wrong" grading -/
-- definition graded_image' (f : M₁ →gm M₂) : graded_module R I :=
-- λi, image_module (f i)
-- definition graded_image'_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image' f :=
-- graded_hom.mk erfl (λi, image_lift (f i))
-- definition graded_image'_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃)
-- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
-- graded_image' f →gm M₃ :=
-- begin
-- apply graded_hom.mk (deg g),
-- intro i,
-- apply image_elim (g i),
-- intro m p, exact h p
-- end
-- theorem graded_image'_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃}
-- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
-- graded_image'_elim g h ∘gm graded_image'_lift f ~gm g :=
-- begin
-- apply graded_homotopy.mk,
-- intro i m, exact sorry --reflexivity
-- end
-- theorem graded_image_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃}
-- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
-- graded_image_elim g h ∘gm graded_image_lift f ~gm g :=
-- begin
-- refine _ ⬝gm graded_image'_elim_compute h,
-- esimp, exact sorry
-- -- refine graded_hom_out_in_compose_out _ _ ⬝gm _, exact sorry
-- -- -- apply graded_homotopy.mk,
-- -- -- intro i m,
-- end
-- variables {α β : I ≃ I}
-- definition gen_image (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : graded_module R I :=
-- λi, image_module (f ↘ (p i))
-- definition gen_image_lift [constructor] (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : M₁ →gm gen_image f p :=
-- graded_hom.mk_out α⁻¹ᵉ (λi, image_lift (f ↘ (p i)))
-- definition gen_image_elim [constructor] {f : M₁ →gm M₂} (p : Πi, deg f (α i) = β i) (g : M₁ →gm M₃)
-- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
-- gen_image f p →gm M₃ :=
-- begin
-- apply graded_hom.mk_out_in α⁻¹ᵉ (deg g),
-- intro i,
-- apply image_elim (g ↘ (ap (deg g) (to_right_inv α i))),
-- intro m p,
-- refine graded_hom_eq_zero m (h _),
-- exact graded_hom_eq_zero m p
-- end
-- theorem gen_image_elim_compute {f : M₁ →gm M₂} {p : deg f ∘ α ~ β} {g : M₁ →gm M₃}
-- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) :
-- gen_image_elim p g h ∘gm gen_image_lift f p ~gm g :=
-- begin
-- -- induction β with β βe, esimp at *, induction p using homotopy.rec_on_idp,
-- assert q : β ⬝e (deg f)⁻¹ᵉ = α,
-- { apply equiv_eq, intro i, apply inv_eq_of_eq, exact (p i)⁻¹ },
-- induction q,
-- -- unfold [gen_image_elim, gen_image_lift],
-- -- induction (is_prop.elim (λi, to_right_inv (deg f) (β i)) p),
-- -- apply graded_homotopy.mk,
-- -- intro i m, reflexivity
-- exact sorry
-- end
definition graded_kernel (f : M₁ →gm M₂) : graded_module R I :=
λi, kernel_module (f i)
definition graded_quotient (S : Πi, property (M i)) [Π i, is_submodule (M i) (S i)] : graded_module R I :=
λi, quotient_module (S i)
definition graded_quotient_map [constructor] (S : Πi, property (M i)) [Π i, is_submodule (M i) (S i)] :
M →gm graded_quotient S :=
graded_hom.mk erfl deg_eq_id (λi, quotient_map (S i))
definition graded_quotient_elim [constructor]
(S : Πi, property (M i)) [Π i, is_submodule (M i) (S i)]
(φ : M →gm M₂)
(H : Πi ⦃m⦄, S i m → φ i m = 0) : graded_quotient S →gm M₂ :=
graded_hom.mk (deg φ) (deg_eq φ) (λi, quotient_elim (φ i) (H i))
definition graded_homology (g : M₂ →gm M₃) (f : M₁ →gm M₂) : graded_module R I :=
graded_quotient (λ i, homology_quotient_property (g i) (f ← i))
-- the two reasonable definitions of graded_homology are definitionally equal
example (g : M₂ →gm M₃) (f : M₁ →gm M₂) :
(λi, homology (g i) (f ← i)) = graded_homology g f := idp
definition graded_homology.mk (g : M₂ →gm M₃) (f : M₁ →gm M₂) {i : I} (m : M₂ i) (h : g i m = 0) :
graded_homology g f i :=
homology.mk _ m h
definition graded_homology_intro [constructor] (g : M₂ →gm M₃) (f : M₁ →gm M₂) :
graded_kernel g →gm graded_homology g f :=
@graded_quotient_map _ _ _ (λ i, homology_quotient_property (g i) (f ← i)) _
definition graded_homology_elim {g : M₂ →gm M₃} {f : M₁ →gm M₂} (h : M₂ →gm M)
(H : compose_constant h f) : graded_homology g f →gm M :=
graded_hom.mk (deg h) (deg_eq h) (λi, homology_elim (h i) (H _ _))
definition graded_homology_isomorphism (g : M₂ →gm M₃) (f : M₁ →gm M₂) (x : I) :
graded_homology g f (deg f x) ≃lm homology (g (deg f x)) (f x) :=
begin
refine homology_isomorphism_homology (isomorphism_of_eq (ap M₁ (left_inv (deg f) x)))
isomorphism.rfl isomorphism.rfl homotopy.rfl _,
exact graded_hom_square f (to_right_inv (deg f) (deg f x)) idp (to_left_inv (deg f) x) idp
end
definition graded_homology_isomorphism_kernel_module
(g : M₂ →gm M₃) (f : M₁ →gm M₂) (x : I)
(H : Πm, image (f ← x) m → m = 0) : graded_homology g f x ≃lm graded_kernel g x :=
begin
apply quotient_module_isomorphism, intro m h, apply subtype_eq, apply H, exact h
end
definition image_of_graded_homology_intro_eq_zero {g : M₂ →gm M₃} {f : M₁ →gm M₂}
⦃i j : I⦄ (p : deg f i = j) (m : graded_kernel g j) (H : graded_homology_intro g f j m = 0) :
image (f ↘ p) m.1 :=
begin
induction p, exact graded_hom_change_image _ _
(@rel_of_quotient_map_eq_zero _ _ _ _ m H)
end
definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type :=
Π⦃i j k⦄ (p : deg f i = j) (q : deg f' j = k), is_exact_mod (f ↘ p) (f' ↘ q)
definition is_exact_gmod.mk {f : M₁ →gm M₂} {f' : M₂ →gm M₃}
(h₁ : Π⦃i⦄ (m : M₁ i), f' (deg f i) (f i m) = 0)
(h₂ : Π⦃i⦄ (m : M₂ (deg f i)), f' (deg f i) m = 0 → image (f i) m) : is_exact_gmod f f' :=
begin intro i j k p q; induction p; induction q; split, apply h₁, apply h₂ end
definition gmod_im_in_ker (h : is_exact_gmod f f') : compose_constant f' f :=
λi j k p q, is_exact.im_in_ker (h p q)
definition gmod_ker_in_im (h : is_exact_gmod f f') ⦃i : I⦄ (m : M₂ i) (p : f' i m = 0) :
image (f ← i) m :=
is_exact.ker_in_im (h (right_inv (deg f) i) idp) m p
definition is_exact_gmod_reindex [constructor] {J : AddGroup} (e : J ≃g I) (h : is_exact_gmod f f') :
is_exact_gmod (graded_hom_reindex e f) (graded_hom_reindex e f') :=
λi j k p q, h (eq_of_inv_eq p) (eq_of_inv_eq q)
definition deg_commute {I : AddAbGroup} {M₁ M₂ M₃ M₄ : graded_module R I} (f : M₁ →gm M₂)
(g : M₃ →gm M₄) : hsquare (deg f) (deg f) (deg g) (deg g) :=
begin
intro i,
refine ap (deg g) (deg_eq f i) ⬝ deg_eq g _ ⬝ _ ⬝ (ap (deg f) (deg_eq g i) ⬝ deg_eq f _)⁻¹,
exact !add.assoc ⬝ ap (λx, i + x) !add.comm ⬝ !add.assoc⁻¹
end
end left_module