-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_updates.py
179 lines (164 loc) · 5.94 KB
/
inference_updates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import json
import os
import torch
import wandb
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
import collections
from inference import prepare_prompt, get_scores, get_generation_config
from datasets import load_dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
NUM_BEAMS = 1
MAX_ANSWER_LENGTH = 10
TEMPLATES = {
"query_in_instructions": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{}: {}\n\n### Response:"
),
"query_in_response": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{}\n\n### Response: {}"
),
"query_in_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{}\n\n### Input:\n{}\n\n### Response:"
),
}
def main(args):
experiment_dir = os.path.join(args.output_dir, args.model_name)
os.makedirs(experiment_dir, exist_ok=True)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path).to(device)
use_fast = True
if (
"alpaca" in args.model_name_or_path
or "llama" in args.model_name_or_path.lower()
):
# the fact tokenizer causes issues with protobuf and tokenizers libraries
use_fast = False
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, use_fast=use_fast
)
config = get_generation_config(tokenizer)
ds = load_dataset(f"coastalcph/fm-updates-{args.model_name}")["test"]
templates_ds = load_dataset("coastalcph/fm_templates")["train"]
outputs = {key: [] for key in ["raw_predictions", "predictions"]}
updated_counts_mutability = collections.defaultdict(int)
for ex_i, ex in enumerate(tqdm(ds)):
relation = ex["relation"]
subject = ex["query"]["label"]
prompt = ex["prediction"]["query"].replace(subject, "[X]")
templates = set(
[
t.replace("[Y].", "").replace("[Y] .", "").strip()
for t in templates_ds[relation][0]["templates"]
]
)
if prompt not in templates:
print("prompt", prompt)
print("templates", templates)
raise Exception("prompt not in templates")
templates.remove(prompt)
context = list(templates)[0]
# TODO: should we run over all?
new_target = ex["updates"][0]
query = "Imagine that {} {}. Then, {}".format(
context.replace("[X]", subject), new_target, prompt.replace("[X]", subject)
)
with torch.no_grad():
prompt = prepare_prompt(
query, args.model_name_or_path, args.instruction, args.template
)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
model_output = model.generate(
input_ids, generation_config=config, output_scores=True
)
answer, token_scores, first_token_score, perplexity = get_scores(
model_output, input_ids, prompt, query, tokenizer
)
outputs["raw_predictions"].append(
{
"index": ex_i,
"query": query,
"predictions": [
{
"output_ids": model_output["sequences"][0].cpu().tolist(),
"answer": tokenizer.decode(model_output["sequences"][0]),
}
],
}
)
outputs["predictions"].append(
{
"index": ex_i,
"query": query,
"new_target": new_target,
"predictions": [
{
"answer": answer,
"per_token_probability": token_scores,
"first_token_probability": first_token_score,
"perplexity": perplexity,
}
],
}
)
if answer.startswith(new_target):
updated_counts_mutability[f"{ex['type']}_succ"] += 1
updated_counts_mutability[f"{ex['type']}_total"] += 1
if ex_i % 100 == 0:
print(updated_counts_mutability)
print("query", query)
print("new_target", new_target)
print("answer", answer)
for k, v in updated_counts_mutability.items():
wandb.run.summary[k] = v
print("Writing outputs")
for key in outputs:
with open(os.path.join(experiment_dir, key + ".json"), "w") as outfile:
for i, item in enumerate(outputs[key]):
outfile.write(json.dumps(item))
if i != len(outputs[key]) - 1:
outfile.write("\n")
with open(os.path.join(experiment_dir, "args.json"), "w") as f:
json.dump(args.__dict__, f, indent=2)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Inference")
parser.add_argument(
"--template",
type=str,
default="query_in_response",
help="query_in_instructions, query_in_response or query_in_input",
)
parser.add_argument(
"--instruction",
type=str,
default="Complete the fact in as few words as possible",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Dir where model outputs will be stored",
)
parser.add_argument("--model_name", type=str, required=True, help="")
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="Model name or path",
)
args = parser.parse_args()
project_name = "prompt_updates"
wandb.init(
project=project_name,
name=" ".join([args.model_name]),
config=args,
)
main(args)