forked from GatlingPeaShooter/SBN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
536 lines (470 loc) · 33 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import argparse
import tqdm
import torch
import torch.nn.functional as F
from transformers import AdamW, BertModel, get_linear_schedule_with_warmup
from models.data_BIO_loader import load_data, DataTterator
from models.model import stage_2_features_generation, Step_1, Step_2_forward, Step_2_reverse, Loss
from models.Metric import Metric
from models.eval_features import unbatch_data
from log import logger
from thop import profile, clever_format
import time
os.environ['CUDA_VISIBLE_DEVICES'] = '5'
sentiment2id = {'none': 0, 'positive': 1, 'negative': 2, 'neutral': 3}
def eval(bert_model, step_1_model, step_2_forward, step_2_reverse, dataset, args):
with torch.no_grad():
bert_model.eval()
step_1_model.eval()
step_2_forward.eval()
step_2_reverse.eval()
'''真实结果'''
gold_instances = []
'''前向预测结果'''
forward_stage1_pred_aspect_result, forward_stage1_pred_aspect_with_sentiment, \
forward_stage1_pred_aspect_sentiment_logit, forward_stage2_pred_opinion_result, \
forward_stage2_pred_opinion_sentiment_logit = [],[],[],[],[]
'''反向预测结果'''
reverse_stage1_pred_opinion_result, reverse_stage1_pred_opinion_with_sentiment, \
reverse_stage1_pred_opinion_sentiment_logit, reverse_stage2_pred_aspect_result, \
reverse_stage2_pred_aspect_sentiment_logit = [], [], [], [], []
for j in range(dataset.batch_count):
tokens_tensor, attention_mask, bert_spans_tensor, spans_mask_tensor, spans_ner_label_tensor, \
spans_aspect_tensor, spans_opinion_label_tensor, reverse_ner_label_tensor, reverse_opinion_tensor, \
reverse_aspect_label_tensor, related_spans_tensor, sentence_length = dataset.get_batch(j)
if j == 0 and args.model_para_test:
bert_model.to("cpu")
flop_bert, para_bert = profile(bert_model, inputs=(tokens_tensor,attention_mask,), custom_ops={})
macs, param = clever_format([flop_bert,para_bert], "%.3f")
print("BERT MACs: ", macs, "BERT Params", param)
logger.info(
'SBERT MACs: {}\tBERT Params: {:.8f}\n\n'.format(macs, param))
bert_features = bert_model(input_ids=tokens_tensor, attention_mask=attention_mask)
if j == 0 and args.model_para_test:
step_1_model.to("cpu")
flop_step1, para_step1 = profile(step_1_model, inputs=(bert_features.last_hidden_state, attention_mask, bert_spans_tensor, spans_mask_tensor,
related_spans_tensor, sentence_length))
macs, param = clever_format([flop_step1,para_step1], "%.3f")
print("STEP 1 MACs: ", macs, "STEP 1 Params", param)
logger.info(
'STEP 1 MACs: {}\tSTEP 1 Params: {:.8f}\n\n'.format(macs, param))
aspect_class_logits, opinion_class_logits, spans_embedding, forward_embedding, reverse_embedding, \
cnn_spans_mask_tensor = step_1_model(
bert_features.last_hidden_state, attention_mask, bert_spans_tensor, spans_mask_tensor,
related_spans_tensor, sentence_length)
'''Batch更新'''
pred_aspect_logits = torch.argmax(F.softmax(aspect_class_logits, dim=2), dim=2)
pred_sentiment_ligits = F.softmax(aspect_class_logits, dim=2)
pred_aspect_logits = torch.where(spans_mask_tensor == 1, pred_aspect_logits,
torch.tensor(0).type_as(pred_aspect_logits))
reverse_pred_stage1_logits = torch.argmax(F.softmax(opinion_class_logits, dim=2), dim=2)
reverse_pred_sentiment_ligits = F.softmax(opinion_class_logits, dim=2)
reverse_pred_stage1_logits = torch.where(spans_mask_tensor == 1, reverse_pred_stage1_logits,
torch.tensor(0).type_as(reverse_pred_stage1_logits))
'''真实结果合成'''
gold_instances.append(dataset.instances[j])
'''双方向预测'''
if torch.nonzero(pred_aspect_logits, as_tuple=False).shape[0] == 0:
forward_stage1_pred_aspect_result.append(torch.full_like(spans_aspect_tensor, -1))
forward_stage1_pred_aspect_with_sentiment.append(pred_aspect_logits)
forward_stage1_pred_aspect_sentiment_logit.append(pred_sentiment_ligits)
forward_stage2_pred_opinion_result.append(torch.full_like(spans_opinion_label_tensor, -1))
forward_stage2_pred_opinion_sentiment_logit.append(
torch.full_like(spans_opinion_label_tensor.unsqueeze(-1).expand(-1, -1, len(sentiment2id)), -1))
else:
pred_aspect_spans = torch.chunk(torch.nonzero(pred_aspect_logits, as_tuple=False),
torch.nonzero(pred_aspect_logits, as_tuple=False).shape[0], dim=0)
pred_span_aspect_tensor = None
for pred_aspect_span in pred_aspect_spans:
batch_num = pred_aspect_span.squeeze()[0]
span_aspect_tensor_unspilt_1 = bert_spans_tensor[batch_num, pred_aspect_span.squeeze()[1], :2]
span_aspect_tensor_unspilt = torch.tensor(
(batch_num, span_aspect_tensor_unspilt_1[0], span_aspect_tensor_unspilt_1[1])).unsqueeze(0)
if pred_span_aspect_tensor is None:
pred_span_aspect_tensor = span_aspect_tensor_unspilt
else:
pred_span_aspect_tensor = torch.cat((pred_span_aspect_tensor, span_aspect_tensor_unspilt),dim=0)
# _,all_span_aspect_tensor, all_bert_embedding, all_attention_mask, all_spans_embedding, all_span_mask = stage_2_features_generation(
# bert_features.last_hidden_state, attention_mask, bert_spans_tensor, spans_mask_tensor,
# spans_embedding, pred_span_aspect_tensor)
_, all_span_aspect_tensor, all_bert_embedding, all_attention_mask, all_spans_embedding, all_span_mask = stage_2_features_generation(
bert_features.last_hidden_state, attention_mask, bert_spans_tensor, spans_mask_tensor,
forward_embedding, pred_span_aspect_tensor)
if j == 0 and args.model_para_test:
step_2_forward.to("cpu")
flop_step2_f, para_step2_f = profile(step_2_forward, inputs=(all_spans_embedding, all_span_mask, all_span_aspect_tensor))
macs, param = clever_format([flop_step2_f, para_step2_f], "%.3f")
print("STEP 2 forward MACs: ", macs, "STEP 2 forward Params", param)
logger.info(
'STEP 2 forward MACs: {}\tSTEP 2 forward Params: {:.8f}\n\n'.format(macs, param))
opinion_class_logits, opinion_attention = step_2_forward(all_spans_embedding, all_span_mask,
all_span_aspect_tensor)
forward_stage1_pred_aspect_result.append(pred_span_aspect_tensor)
forward_stage1_pred_aspect_with_sentiment.append(pred_aspect_logits)
forward_stage1_pred_aspect_sentiment_logit.append(pred_sentiment_ligits)
forward_stage2_pred_opinion_result.append(torch.argmax(F.softmax(opinion_class_logits, dim=2), dim=2))
forward_stage2_pred_opinion_sentiment_logit.append(F.softmax(opinion_class_logits, dim=2))
'''反向预测'''
if torch.nonzero(reverse_pred_stage1_logits, as_tuple=False).shape[0] == 0:
reverse_stage1_pred_opinion_result.append(torch.full_like(reverse_opinion_tensor, -1))
reverse_stage1_pred_opinion_with_sentiment.append(reverse_pred_stage1_logits)
reverse_stage1_pred_opinion_sentiment_logit.append(reverse_pred_sentiment_ligits)
reverse_stage2_pred_aspect_result.append(torch.full_like(reverse_aspect_label_tensor, -1))
reverse_stage2_pred_aspect_sentiment_logit.append(
torch.full_like(reverse_aspect_label_tensor.unsqueeze(-1).expand(-1, -1, len(sentiment2id)), -1))
else:
reverse_pred_opinion_spans = torch.chunk(torch.nonzero(reverse_pred_stage1_logits, as_tuple=False),
torch.nonzero(reverse_pred_stage1_logits, as_tuple=False).shape[0], dim=0)
reverse_span_opinion_tensor = None
for reverse_pred_opinion_span in reverse_pred_opinion_spans:
batch_num = reverse_pred_opinion_span.squeeze()[0]
reverse_opinion_tensor_unspilt = bert_spans_tensor[batch_num, reverse_pred_opinion_span.squeeze()[1], :2]
reverse_opinion_tensor_unspilt = torch.tensor(
(batch_num, reverse_opinion_tensor_unspilt[0], reverse_opinion_tensor_unspilt[1])).unsqueeze(0)
if reverse_span_opinion_tensor is None:
reverse_span_opinion_tensor = reverse_opinion_tensor_unspilt
else:
reverse_span_opinion_tensor = torch.cat((reverse_span_opinion_tensor, reverse_opinion_tensor_unspilt), dim=0)
# __, all_reverse_opinion_tensor, reverse_bert_embedding, reverse_attention_mask, \
# reverse_spans_embedding, reverse_span_mask = stage_2_features_generation(bert_features.last_hidden_state,
# attention_mask,
# bert_spans_tensor,
# spans_mask_tensor,
# spans_embedding,
# reverse_span_opinion_tensor)
__, all_reverse_opinion_tensor, reverse_bert_embedding, reverse_attention_mask, \
reverse_spans_embedding, reverse_span_mask = stage_2_features_generation(
bert_features.last_hidden_state,
attention_mask,
bert_spans_tensor,
spans_mask_tensor,
reverse_embedding,
reverse_span_opinion_tensor)
if j == 0 and args.model_para_test:
step_2_reverse.to("cpu")
flop_step2_r, para_step2_r = profile(step_2_reverse, inputs=(reverse_spans_embedding,
reverse_span_mask,
all_reverse_opinion_tensor))
macs, param = clever_format([flop_step2_r, para_step2_r], "%.3f")
print("STEP 2 reverse MACs: ", macs, "STEP 2 reverse Params", param)
logger.info(
'STEP 2 reverse MACs: {}\tSTEP 2 reverse Params: {:.8f}\n\n'.format(macs,param))
reverse_aspect_class_logits, reverse_aspect_attention = step_2_reverse(reverse_spans_embedding,
reverse_span_mask,
all_reverse_opinion_tensor)
reverse_stage1_pred_opinion_result.append(reverse_span_opinion_tensor)
reverse_stage1_pred_opinion_with_sentiment.append(reverse_pred_stage1_logits)
reverse_stage1_pred_opinion_sentiment_logit.append(reverse_pred_sentiment_ligits)
reverse_stage2_pred_aspect_result.append(torch.argmax(F.softmax(reverse_aspect_class_logits, dim=2), dim=2))
reverse_stage2_pred_aspect_sentiment_logit.append(F.softmax(reverse_aspect_class_logits, dim=2))
gold_instances = [x for i in gold_instances for x in i]
forward_pred_data = (forward_stage1_pred_aspect_result, forward_stage1_pred_aspect_with_sentiment,
forward_stage1_pred_aspect_sentiment_logit, forward_stage2_pred_opinion_result,
forward_stage2_pred_opinion_sentiment_logit)
forward_pred_result = unbatch_data(forward_pred_data)
reverse_pred_data = (reverse_stage1_pred_opinion_result, reverse_stage1_pred_opinion_with_sentiment,
reverse_stage1_pred_opinion_sentiment_logit, reverse_stage2_pred_aspect_result,
reverse_stage2_pred_aspect_sentiment_logit)
reverse_pred_result = unbatch_data(reverse_pred_data)
metric = Metric(args, forward_pred_result, reverse_pred_result, gold_instances)
aspect_result, opinion_result, apce_result, pair_result, triplet_result = metric.score_triples()
# print('aspect precision:', aspect_result[0], "aspect recall: ", aspect_result[1], "aspect f1: ", aspect_result[2])
# print('opinion precision:', opinion_result[0], "opinion recall: ", opinion_result[1], "opinion f1: ",
# opinion_result[2])
# print('APCE precision:', apce_result[0], "APCE recall: ", apce_result[1], "APCE f1: ",
# apce_result[2])
# print('pair precision:', pair_result[0], "pair recall:", pair_result[1], "pair f1:", pair_result[2])
# print('triple precision:', triplet_result[0], "triple recall: ", triplet_result[1], "triple f1: ", triplet_result[2])
logger.info(
'aspect precision: {}\taspect recall: {:.8f}\taspect f1: {:.8f}'.format(aspect_result[0], aspect_result[1], aspect_result[2]))
logger.info(
'opinion precision: {}\topinion recall: {:.8f}\topinion f1: {:.8f}'.format(opinion_result[0],
opinion_result[1],
opinion_result[2]))
logger.info('APCE precision: {}\tAPCE recall: {:.8f}\tAPCE f1: {:.8f}'.format(apce_result[0],
apce_result[1], apce_result[2]))
logger.info('pair precision: {}\tpair recall: {:.8f}\tpair f1: {:.8f}'.format(pair_result[0],
pair_result[1],
pair_result[2]))
logger.info('triple precision: {}\ttriple recall: {:.8f}\ttriple f1: {:.8f}'.format(triplet_result[0],
triplet_result[1],
triplet_result[2]))
bert_model.train()
step_1_model.train()
step_2_forward.train()
step_2_reverse.train()
return aspect_result, opinion_result, apce_result, pair_result, triplet_result
def train(args):
if args.dataset_path == './datasets/BIO_form/':
train_path = args.dataset_path + args.dataset + "/train.json"
dev_path = args.dataset_path + args.dataset + "/dev.json"
test_path = args.dataset_path + args.dataset + "/test.json"
else:
train_path = args.dataset_path + args.dataset + "/train_triplets.txt"
dev_path = args.dataset_path + args.dataset + "/dev_triplets.txt"
test_path = args.dataset_path + args.dataset + "/test_triplets.txt"
print('-------------------------------')
print('开始加载测试集')
logger.info('开始加载测试集')
test_datasets = load_data(args, test_path, if_train=False)
testset = DataTterator(test_datasets, args)
print('测试集加载完成')
logger.info('测试集加载完成')
print('-------------------------------')
Bert = BertModel.from_pretrained(args.init_model)
bert_config = Bert.config
Bert.to(args.device)
bert_param_optimizer = list(Bert.named_parameters())
step_1_model = Step_1(args, bert_config)
step_1_model.to(args.device)
step_1_param_optimizer = list(step_1_model.named_parameters())
step2_forward_model = Step_2_forward(args, bert_config)
step2_forward_model.to(args.device)
forward_step2_param_optimizer = list(step2_forward_model.named_parameters())
step2_reverse_model = Step_2_reverse(args, bert_config)
step2_reverse_model.to(args.device)
reverse_step2_param_optimizer = list(step2_reverse_model.named_parameters())
training_param_optimizer = [
{'params': [p for n, p in bert_param_optimizer]},
{'params': [p for n, p in step_1_param_optimizer], 'lr': args.task_learning_rate},
{'params': [p for n, p in forward_step2_param_optimizer], 'lr': args.task_learning_rate},
{'params': [p for n, p in reverse_step2_param_optimizer], 'lr': args.task_learning_rate}]
optimizer = AdamW(training_param_optimizer, lr=args.learning_rate)
if args.muti_gpu:
Bert = torch.nn.DataParallel(Bert)
step_1_model = torch.nn.DataParallel(step_1_model)
step2_forward_model = torch.nn.DataParallel(step2_forward_model)
step2_reverse_model = torch.nn.DataParallel(step2_reverse_model)
if args.mode == 'train':
print('-------------------------------')
logger.info('开始加载训练与验证集')
print('开始加载训练与验证集')
train_datasets = load_data(args, train_path, if_train=True)
trainset = DataTterator(train_datasets, args)
print("Train features build completed")
print("Dev features build beginning")
dev_datasets = load_data(args, dev_path, if_train=False)
devset = DataTterator(dev_datasets, args)
print('训练集与验证集加载完成')
logger.info('训练集与验证集加载完成')
print('-------------------------------')
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
# scheduler
if args.whether_warm_up:
training_steps = args.epochs * trainset.batch_count
warmup_steps = int(training_steps * args.warm_up)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=training_steps)
tot_loss = 0
tot_kl_loss = 0
best_aspect_f1, best_opinion_f1, best_APCE_f1, best_pairs_f1, best_triple_f1 = 0,0,0,0,0
best_aspect_epoch, best_opinion_epoch, best_APCE_epoch, best_pairs_epoch, best_triple_epoch= 0,0,0,0,0
for i in range(args.epochs):
logger.info(('Epoch:{}'.format(i)))
for j in tqdm.trange(trainset.batch_count):
# for j in range(trainset.batch_count):
if j == 1:
start = time.time()
optimizer.zero_grad()
tokens_tensor, attention_mask, bert_spans_tensor, spans_mask_tensor, spans_ner_label_tensor, \
spans_aspect_tensor, spans_opinion_label_tensor, reverse_ner_label_tensor, reverse_opinion_tensor, \
reverse_aspect_label_tensor, related_spans_tensor, sentence_length = trainset.get_batch(j)
bert_output = Bert(input_ids=tokens_tensor, attention_mask=attention_mask)
aspect_class_logits, opinion_class_logits, spans_embedding, forward_embedding, reverse_embedding, \
cnn_spans_mask_tensor = step_1_model(
bert_output.last_hidden_state,
attention_mask,
bert_spans_tensor,
spans_mask_tensor,
related_spans_tensor,
sentence_length)
'''Batch更新'''
all_span_opinion_tensor, all_span_aspect_tensor, all_bert_embedding, all_attention_mask, \
all_spans_embedding, all_span_mask = stage_2_features_generation(bert_output.last_hidden_state,
attention_mask, bert_spans_tensor,
spans_mask_tensor, forward_embedding,
spans_aspect_tensor,
spans_opinion_label_tensor)
all_reverse_aspect_tensor, all_reverse_opinion_tensor, reverse_bert_embedding, reverse_attention_mask, \
reverse_spans_embedding, reverse_span_mask = stage_2_features_generation(bert_output.last_hidden_state,
attention_mask, bert_spans_tensor,
spans_mask_tensor, reverse_embedding,
reverse_opinion_tensor,
reverse_aspect_label_tensor)
step_2_opinion_class_logits, opinion_attention = step2_forward_model(all_spans_embedding, all_span_mask, all_span_aspect_tensor)
step_2_aspect_class_logits, aspect_attention = step2_reverse_model(reverse_spans_embedding,
reverse_span_mask, all_reverse_opinion_tensor)
loss, kl_loss = Loss(spans_ner_label_tensor, aspect_class_logits, all_span_opinion_tensor, step_2_opinion_class_logits,
spans_mask_tensor, all_span_mask, reverse_ner_label_tensor, opinion_class_logits,
all_reverse_aspect_tensor, step_2_aspect_class_logits, cnn_spans_mask_tensor, reverse_span_mask,
spans_embedding, related_spans_tensor, args)
if args.accumulation_steps > 1:
loss = loss / args.accumulation_steps
loss.backward()
if ((j + 1) % args.accumulation_steps) == 0:
optimizer.step()
if args.whether_warm_up:
scheduler.step()
else:
loss.backward()
optimizer.step()
if args.whether_warm_up:
scheduler.step()
tot_loss += loss.item()
tot_kl_loss += kl_loss
logger.info(('Loss:', tot_loss))
logger.info(('KL_Loss:', tot_kl_loss))
tot_loss = 0
tot_kl_loss = 0
print('Evaluating, please wait')
# aspect_result, opinion_result, apce_result, pair_result, triplet_result = eval(Bert, step_1_model,
# step2_forward_model,
# step2_reverse_model,
# devset, args)
aspect_result, opinion_result, apce_result, pair_result, triplet_result = eval(Bert, step_1_model,
step2_forward_model,
step2_reverse_model,
testset, args)
print('Evaluating complete')
if aspect_result[2] > best_aspect_f1:
best_aspect_f1 = aspect_result[2]
best_aspect_precision = aspect_result[0]
best_aspect_recall = aspect_result[1]
best_aspect_epoch = i
if opinion_result[2] > best_opinion_f1:
best_opinion_f1 = opinion_result[2]
best_opinion_precision = opinion_result[0]
best_opinion_recall = opinion_result[1]
best_opinion_epoch = i
if apce_result[2] > best_APCE_f1:
best_APCE_f1 = apce_result[2]
best_APCE_precision = apce_result[0]
best_APCE_recall = apce_result[1]
best_APCE_epoch = i
if pair_result[2] > best_pairs_f1:
best_pairs_f1 = pair_result[2]
best_pairs_precision = pair_result[0]
best_pairs_recall = pair_result[1]
best_pairs_epoch = i
if triplet_result[2] > best_triple_f1 and triplet_result[2] > 0.55:
model_path = args.model_dir +args.dataset +'_'+ str(triplet_result[2]) + '.pt'
state = {
"bert_model": Bert.state_dict(),
"step_1_model": step_1_model.state_dict(),
"step2_forward_model": step2_forward_model.state_dict(),
"step2_reverse_model": step2_reverse_model.state_dict(),
"optimizer": optimizer.state_dict()
}
torch.save(state, model_path)
logger.info("_________________________________________________________")
logger.info("best model save")
logger.info("_________________________________________________________")
best_triple_f1 = triplet_result[2]
best_triple_precision = triplet_result[0]
best_triple_recall = triplet_result[1]
best_triple_epoch = i
logger.info(
'best aspect epoch: {}\tbest aspect precision: {:.8f}\tbest aspect recall: {:.8f}\tbest aspect f1: {:.8f}'.
format(best_aspect_epoch, best_aspect_precision, best_aspect_recall, best_aspect_f1))
logger.info(
'best opinion epoch: {}\tbest opinion precision: {:.8f}\tbest opinion recall: {:.8f}\tbest opinion f1: {:.8f}'.
format(best_opinion_epoch, best_opinion_precision, best_opinion_recall, best_opinion_f1))
logger.info('best APCE epoch: {}\tbest APCE precision: {:.8f}\tbest APCE recall: {:.8f}\tbest APCE f1: {:.8f}'.
format(best_APCE_epoch, best_APCE_precision, best_APCE_recall, best_APCE_f1))
logger.info('best pair epoch: {}\tbest pair precision: {:.8f}\tbest pair recall: {:.8f}\tbest pair f1: {:.8f}'.
format(best_pairs_epoch, best_pairs_precision, best_pairs_recall, best_pairs_f1))
logger.info(
'best triple epoch: {}\tbest triple precision: {:.8f}\tbest triple recall: {:.8f}\tbest triple f1: {:.8f}'.
format(best_triple_epoch, best_triple_precision, best_triple_recall, best_triple_f1))
logger.info("Features build completed")
logger.info("Evaluation on testset:")
# model_path = args.model_dir + args.dataset+'_'+str(best_triple_f1) + '.pt'
model_path = args.model_dir +args.dataset +'_'+ str(0.6265060240963854) + '.pt'
if args.muti_gpu:
state = torch.load(model_path)
else:
state = torch.load(model_path)
# state = load_with_single_gpu(model_path)
Bert.load_state_dict(state['bert_model'])
step_1_model.load_state_dict(state['step_1_model'])
step2_forward_model.load_state_dict(state['step2_forward_model'])
step2_reverse_model.load_state_dict(state['step2_reverse_model'])
eval(Bert, step_1_model, step2_forward_model, step2_reverse_model, testset, args)
def load_with_single_gpu(model_path):
state_dict = torch.load(model_path)
from collections import OrderedDict
new_state_dict = OrderedDict()
final_state = {}
for i in state_dict:
for k, v in state_dict[i].items():
name = k[7:]
new_state_dict[name] = v
final_state[i] = new_state_dict
new_state_dict = OrderedDict()
return final_state
def main():
parser = argparse.ArgumentParser(description="Train scrip")
parser.add_argument('--model_dir', type=str, default="savemodel/", help='model path prefix')
parser.add_argument('--device', type=str, default="cuda", help='cuda or cpu')
parser.add_argument("--init_model", default="pretrained_models/bert-base-uncased", type=str, required=False,help="Initial model.")
parser.add_argument("--init_vocab", default="pretrained_models/bert-base-uncased", type=str, required=False,help="Initial vocab.")
parser.add_argument("--bert_feature_dim", default=768, type=int, help="feature dim for bert")
parser.add_argument("--do_lower_case", default=True, action='store_true',help="Set this flag if you are using an uncased model.")
parser.add_argument("--max_seq_length", default=100, type=int,help="The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--drop_out", type=int, default=0.1, help="")
parser.add_argument("--max_span_length", type=int, default=8, help="")
parser.add_argument("--embedding_dim4width", type=int, default=200,help="")
parser.add_argument("--task_learning_rate", type=float, default=1e-4)
parser.add_argument("--learning_rate", type=float, default=1e-5)
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--muti_gpu", default=False)
parser.add_argument('--epochs', type=int, default=130, help='training epoch number')
parser.add_argument("--train_batch_size", default=16, type=int, help="batch size for training")
parser.add_argument("--RANDOM_SEED", type=int, default=2022, help="")
'''修改了数据格式'''
parser.add_argument("--dataset_path", default="./datasets/ASTE-Data-V2-EMNLP2020/",
choices=["./datasets/BIO_form/", "./datasets/ASTE-Data-V2-EMNLP2020/"],
help="")
parser.add_argument("--dataset", default="lap14", type=str, choices=["lap14", "res14", "res15", "res16"],
help="specify the dataset")
parser.add_argument('--mode', type=str, default="test", choices=["train", "test"], help='option: train, test')
'''对相似Span进行attention'''
# 分词中仅使用结果的首token
parser.add_argument("--Only_token_head", default=False)
# 选择Span的合成方式
parser.add_argument('--span_generation', type=str, default="Max", choices=["Start_end", "Max", "Average", "CNN", "ATT"],
help='option: CNN, Max, Start_end, Average, ATT, SE_ATT')
parser.add_argument('--ATT_SPAN_block_num', type=int, default=1, help="number of block in generating spans")
# 是否对相关span添加分离Loss
parser.add_argument("--kl_loss", default=True)
parser.add_argument("--kl_loss_weight", type=int, default=0.5, help="weight of the kl_loss")
parser.add_argument('--kl_loss_mode', type=str, default="KLLoss", choices=["KLLoss", "JSLoss", "EMLoss, CSLoss"],
help='选择分离相似Span的分离函数, KL散度、JS散度、欧氏距离以及余弦相似度')
# 是否使用测试中的筛选算法
parser.add_argument('--Filter_Strategy', default=True, help='是否使用筛选算法去除冲突三元组')
# 已被弃用 相关Span注意力
parser.add_argument("--related_span_underline", default=False)
parser.add_argument("--related_span_block_num", type=int, default=1, help="number of block in related span attention")
# 选择Cross Attention中ATT块的个数
parser.add_argument("--block_num", type=int, default=1, help="number of block")
parser.add_argument("--output_path", default='triples.json')
#按照句子的顺序输入排序
parser.add_argument("--order_input", default=True, help="")
'''随机化输入span排序'''
parser.add_argument("--random_shuffle", type=int, default=0, help="")
# 验证模型复杂度
parser.add_argument("--model_para_test", default=False)
# 使用Warm up快速收敛
parser.add_argument('--whether_warm_up', default=False)
parser.add_argument('--warm_up', type=float, default=0.1)
args = parser.parse_args()
for k,v in sorted(vars(args).items()):
logger.info(str(k) + '=' + str(v))
train(args)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
logger.info("keyboard break")