-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagcn_survival.py
941 lines (789 loc) · 37 KB
/
agcn_survival.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
import argparse
import math
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
import csv
import networkx as nx
from sklearn.metrics import roc_curve, roc_auc_score
from lifelines.utils import concordance_index
BASE_DIR = os.path.join(os.environ["HOME"], 'AGCN_tf/AGCN_tf')
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models/networks'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import WSI_NLST_loader
import WSI_TCGA_loader
import prepare_data
import io_utils
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='AGCN',
help='Model name: AGCN[default: AGCN]')
parser.add_argument('--log_dir', default='log/agcn_survival_ADC', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=500, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=100, help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default=64, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=2000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.8, help='Decay rate for lr decay [default: 0.8]')
FLAGS = parser.parse_args()
# MODLE_NAME = 'chebyshev' # 'chebyshev'
BATCH_SIZE = FLAGS.batch_size
MAX_NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
DATASET_NAME = 'processed_{}maxnode'.format(MAX_NUM_POINT)
NUM_FEATURE = 128
NUM_CLASSES = 2
EVAl_FREQ = 5
MODEL_NAME = 'chebyshev'
DATA_NAME = 'NLST'
parameter_pack = {
'lr': BASE_LEARNING_RATE,
'max_node': MAX_NUM_POINT,
'batch_size': BATCH_SIZE,
}
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model + '.py')
BASE_LOG_DIR = 'log/%s_survival_%s' % (MODEL_NAME, DATA_NAME)
if not os.path.exists(BASE_LOG_DIR):
os.mkdir(BASE_LOG_DIR)
LOG_DIR = os.path.join(BASE_LOG_DIR, 'node_%s_batch_%s' % (MAX_NUM_POINT, BATCH_SIZE))
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
RESULT_DIR = os.path.join(LOG_DIR, 'results')
if not os.path.exists(RESULT_DIR):
os.mkdir(RESULT_DIR)
FEATURE_DIR = os.path.join(LOG_DIR, 'features')
if not os.path.exists(FEATURE_DIR):
os.mkdir(FEATURE_DIR)
IMG_DIR = os.path.join(LOG_DIR, 'image_save')
if not os.path.exists(IMG_DIR):
os.mkdir(IMG_DIR)
MODEL_SAVE_DIR = os.path.join(LOG_DIR, 'model_save')
if not os.path.exists(MODEL_SAVE_DIR):
os.mkdir(MODEL_SAVE_DIR)
LABEL_DIR = os.path.join(BASE_DIR, 'models/survival_labels')
assert os.path.exists(LABEL_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train_%s_survival_%s.txt' % (MODEL_NAME, DATASET_NAME)), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
# hyper-parameters
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch, base_lr):
learning_rate = tf.train.exponential_decay(
base_lr, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 1e-8) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
# model_list = ['agcn']
# for model_name in model_list:
# print("working on model %s" % model_name)
with tf.Graph().as_default():
with tf.device('/gpu:' + str(GPU_INDEX)):
data_pl, labels_pl, laplacian_pl, size_x_pl = MODEL.placeholder_inputs_survival(
BATCH_SIZE,
MAX_NUM_POINT,
NUM_FEATURE)
status_pl = MODEL.placeholder_survival(BATCH_SIZE)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
learning_rate_pl = tf.placeholder(tf.float32, shape=())
dc_learning_rate = get_learning_rate(batch, base_lr=learning_rate_pl)
# Get model and loss
if MODEL_NAME == 'agcn' or MODEL_NAME == 'agcn_attn':
end_points = MODEL.basic_agcn_wsi_survival2(data_pl,
laplacian_pl,
size_x_pl,
MAX_NUM_POINT,
1,
is_training_pl,
use_attn=True,
bn_decay=bn_decay)
loss = MODEL.survival_loss(end_points['output'], status_pl)
optimizer = tf.train.AdamOptimizer(dc_learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# optimizer = tf.train.AdamOptimizer(learning_rate_pl)
# train_op = optimizer.minimize(loss, global_step=batch)
elif MODEL_NAME == 'chebyshev' or MODEL_NAME == 'chebyshev_attn':
end_points = MODEL.gcn_chebyshev_survival(data_pl,
laplacian_pl,
size_x_pl,
MAX_NUM_POINT,
1,
is_training_pl,
use_attn=False,
bn_decay=None)
loss = MODEL.survival_loss(end_points['output'], status_pl)
optimizer = tf.train.AdamOptimizer(dc_learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
else:
ValueError("No Such Model Name {}".format(MODEL_NAME))
return
# loss_reg = MODEL.loss_reg(end_points['regs_list'])
# Get training operator
# learning_rate = get_learning_rate(batch)
# tf.summary.scalar('learning_rate', learning_rate)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Init variables
# init = tf.global_variables_initializer()
ops = {'pointclouds_pl': data_pl,
'status_pl': status_pl,
'laplacian_pl': laplacian_pl,
'size_x_pl': size_x_pl,
# 'attn': end_points['attn'],
'is_training_pl': is_training_pl,
'final_lr': dc_learning_rate,
'learning_rate_pl': learning_rate_pl,
'pred': end_points['output'],
'graph_feature': end_points['graph_feature'],
'loss': loss,
'train_op': train_op,
'saver_op': end_points['saver'],
'step': batch}
# if os.path.exists(MODEL_SAVE_DIR + '/agcn_survival_backbone_ep50.meta'):
# load model and evaluation
# restore_eval(sess, ops)
# else:
# train model
max_repeat = 1
for trial_id, lr in enumerate([0.0002]):
log_string("processing %s trial on learning rate %f, batch size %s" % (trial_id, lr, BATCH_SIZE))
parameter_pack = {
'lr': lr,
'max_node': MAX_NUM_POINT,
'batch_size': BATCH_SIZE,
}
# Init variables
init = tf.global_variables_initializer()
sess.run(init,
{is_training_pl: True})
cross_validation = {
'avg_ci': [],
'oneshot_ci': [],
'patient_ci': [],
}
loss_seq = [0.0] * MAX_EPOCH
train_ci = [0.0] * MAX_EPOCH
for _ in range(max_repeat):
p_value_list, c_index_list = [], []
patient_ci_list, oneshot_ci_list = [], []
for epoch in range(MAX_EPOCH):
# log_string('**** EPOCH %03d ****' % epoch)
sys.stdout.flush()
train_data_dict, loss = train_one_epoch(epoch, sess, ops, lr)
loss_seq[epoch] += loss
train_ci[epoch] += train_data_dict['train_ci']
if epoch % 5 == 0:
save_graph_feature(train_data_dict, epoch)
if epoch > 0 and epoch % 5 == 0:
test_data_dict = evaluate_one_epoch(epoch, sess, ops)
c_index_list += [test_data_dict['ci']]
oneshot_ci_list += [test_data_dict['oneshot_ci']]
patient_ci_list += [test_data_dict['p_ci']]
p_value_list += [test_data_dict['p_value']]
save_graph_feature(test_data_dict, epoch, istrain=False)
""" train on LASSO COX using the latest predictions"""
# train_cox_lasso(train_data_dict, test_data_dict)
# save_feature_csv(train_data_dict, test_data_dict)
best_set_ci, best_set_os_ci, best_set_p_ci = statistic_results(c_index_list,
oneshot_ci_list,
patient_ci_list,
p_value_list)
cross_validation['avg_ci'].append(best_set_ci)
cross_validation['oneshot_ci'].append(best_set_os_ci)
cross_validation['patient_ci'].append(best_set_p_ci)
# calculate , print CI after cross-validation
process_cv(cross_validation, parameter_pack, trial_id)
# cal and save the (avg.) loss sequence for model comparison
save_loss_seq([l / float(MAX_EPOCH) for l in loss_seq], parameter_pack)
save_ci_seq([l / float(MAX_EPOCH) for l in train_ci], parameter_pack)
def process_cv(cv, p_set, idx):
lr = p_set['lr']
batch_size = p_set['batch_size']
list_ci, list_p_value = [], []
for s in cv['avg_ci']:
list_ci += [s['ci']]
list_p_value += [s['p_value']]
list_ci = np.array(list_ci)
# list_p_value = np.array(list_p_value)
log_string('min CI: %f, max CI: %f' % (np.min(list_ci), np.max(list_ci)))
log_string('avg. CI: %f, CI std.: %f\n' % (float(np.mean(list_ci)), float(np.std(list_ci))))
list_os_ci, list_p_value = [], []
for s in cv['oneshot_ci']:
list_os_ci += [s['ci']]
list_p_value += [s['p_value']]
list_os_ci = np.array(list_os_ci)
# list_p_value = np.array(list_p_value)
log_string('min oneshot CI: %f, max oneshot CI: %f' % (np.min(list_os_ci), np.max(list_os_ci)))
log_string('avg. oneshot CI: %f, oneshot CI std.: %f\n' % (float(np.mean(list_os_ci)), float(np.std(list_os_ci))))
list_p_ci, list_p_value = [], []
for s in cv['patient_ci']:
list_p_ci += [s['ci']]
list_p_value += [s['p_value']]
list_p_ci = np.array(list_p_ci)
# list_p_value = np.array(list_p_value)
log_string('min patient CI: %f, max patient CI: %f' % (np.min(list_p_ci), np.max(list_p_ci)))
log_string('avg. patient CI: %f, patient CI std.: %f\n' % (float(np.mean(list_p_ci)), float(np.std(list_p_ci))))
with open(os.path.join(RESULT_DIR, 'cv_%s_%s.csv' % (MODEL_NAME, DATA_NAME)), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
if idx == 0:
writer.writerow(['learning_rate',
'batch_size',
'max CI',
'avg CI',
'CI std',
'max oneshot CI',
'avg oneshot CI',
'oneshot CI std',
'max patient CI',
'avg patient CI',
'patient CI std'])
writer.writerow([lr] + [batch_size] + [np.max(list_ci)] + [float(np.mean(list_ci))] + [float(np.std(list_ci))]
+ [np.max(list_os_ci)] + [np.mean(list_os_ci)] + [np.std(list_os_ci)]
+ [np.max(list_p_ci)] + [np.mean(list_p_ci)] + [np.std(list_p_ci)])
def statistic_results(ci_list, oneshot_ci_list, patient_ci_list, p_list):
""" from the training process, select best results (early stopping) and save corres. p_value and epoch"""
best_ci = float(np.max(np.array(ci_list)))
idx = np.argmax(np.array(ci_list))
best_p = float(p_list[idx])
best_epoch = (idx + 1) * 5
best_avg_ci = {
'p_value': best_p,
'ci': best_ci,
'epoch': best_epoch
}
best_os_ci = float(np.max(np.array(oneshot_ci_list)))
idx = np.argmax(np.array(oneshot_ci_list))
best_p = float(p_list[idx])
best_epoch_os = (idx + 1) * 5
best_oneshot_ci = {
'p_value': best_p,
'ci': best_os_ci,
'epoch': best_epoch_os
}
best_p_ci = float(np.max(np.array(patient_ci_list)))
idx = np.argmax(np.array(patient_ci_list))
best_p = float(p_list[idx])
best_epoch_p = (idx + 1) * 5
best_patient_ci = {
'p_value': best_p,
'ci': best_p_ci,
'epoch': best_epoch_p
}
return best_avg_ci, best_oneshot_ci, best_patient_ci
def save_loss_seq(loss_seq, p_set):
import csv
lr = p_set['lr']
batch_size = p_set['batch_size']
assert type(loss_seq) == list
with open(os.path.join(RESULT_DIR, 'loss_%s_%s.csv' % (MODEL_NAME, DATA_NAME)), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['learning_rate', 'batch_size'])
writer.writerow([lr] + [batch_size])
writer.writerow(['losses sequence'])
writer.writerow(loss_seq)
def save_ci_seq(ci_seq, p_set):
import csv
lr = p_set['lr']
batch_size = p_set['batch_size']
assert type(ci_seq) == list
with open(os.path.join(RESULT_DIR, 'c_index_%s_%s.csv' % (MODEL_NAME, DATA_NAME)), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['learning_rate', 'batch_size'])
writer.writerow([lr] + [batch_size])
writer.writerow(['ci sequence'])
writer.writerow(ci_seq)
def save_graph_feature(result_dict, epoch, istrain=True):
features = result_dict['patient_feature']
status = result_dict['status']
time = result_dict['time']
pid = result_dict['pid']
if istrain:
csv_file = 'train_feature_%s_%s_ep%s.csv' % (MODEL_NAME, DATA_NAME, epoch)
else:
csv_file = 'test_feature_%s_%s_ep%s.csv' % (MODEL_NAME, DATA_NAME, epoch)
with open(os.path.join(FEATURE_DIR, csv_file), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['pid', 'status', 'time', 'features'])
for idx, p in enumerate(np.unique(pid).tolist()):
p_idx = np.where(pid == p)
p_feature = features[p]
p_status = status[p_idx]
p_time = time[p_idx]
writer.writerow([p] + [p_status[0].tolist()] + [p_time[0].tolist()] + p_feature.tolist())
# def save_feature_csv(train, test, epoch):
# import csv
#
# train_graph_feature = train['features']
# train_status = train['status']
# train_time = train['time']
# train_pid = train['pid']
#
# with open(os.path.join(FEATURE_DIR, 'train_%s_%s_%d.csv' % (MODEL_NAME, DATA_NAME, epoch)), 'w') as csvfile:
# writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
#
# writer.writerow(['pid', 'status', 'survival_time', 'feature'])
# for idx, row in enumerate(train_graph_feature.tolist()):
# writer.writerow([train_pid[idx]] + [train_status[idx]] + [train_time[idx]] + row)
#
# test_graph_feature = test['features']
# test_status = test['status']
# test_time = test['time']
# test_pid = test['pid']
#
# with open(os.path.join(FEATURE_DIR, 'test_%s_%s_%d.csv' % (MODEL_NAME, DATA_NAME, epoch)), 'w') as csvfile:
# writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
#
# writer.writerow(['pid', 'status', 'survival_time', 'feature'])
# for idx, row in enumerate(test_graph_feature.tolist()):
# writer.writerow([test_pid[idx]] + [test_status[idx]] + [test_time[idx]] + row)
def retrieve_feature(sess, ops, data, laplacian, size_x, time, status, test_pid, is_training=False):
"""
Parse data to network, get predicted survival risk, graph features(WSI wise),
and calculate and print CI on testing
:param sess:
:param ops:
:param data:
:param laplacian:
:param size_x:
:param time:
:param status:
:param is_training:
:return:
"""
file_size = data.shape[0]
num_batches = file_size // BATCH_SIZE
test_ci = 0.0
if num_batches == 0:
# data size < BATCH_SIZE
tile_times = int(BATCH_SIZE // file_size) + 1
data_tiled = np.tile(data, (tile_times, 1, 1))[: BATCH_SIZE]
laplacian_tiled = np.tile(laplacian, (tile_times, 1, 1))[: BATCH_SIZE]
size_x_tiled = np.tile(size_x, reps=tile_times)[: BATCH_SIZE]
feed_dict = {ops['pointclouds_pl']: data_tiled,
ops['is_training_pl']: is_training,
ops['laplacian_pl']: laplacian_tiled,
ops['size_x_pl']: size_x_tiled,
}
pred_val, graph_feature = sess.run(
[
ops['pred'],
ops['graph_feature']
],
feed_dict=feed_dict)
all_preds = -np.exp(pred_val[: file_size].ravel()) # pred_val -> predicted survival time
all_features = graph_feature[: file_size]
test_ci += concordance_index(time, all_preds, status)
log_string('Testing CI : %f \n\n' % test_ci)
avg_test_ci = test_ci
test_ci_oneshot = test_ci
patient_ci = get_patient_ci(time[: file_size],
all_preds,
status[: file_size],
test_pid[: file_size])
else:
batch_count = 0.0
all_features, all_preds, all_status, all_times = [], [], [], []
for batch_idx in range(num_batches):
batch_count += 1
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
feed_dict = {ops['pointclouds_pl']: data[start_idx:end_idx],
ops['is_training_pl']: is_training,
ops['laplacian_pl']: laplacian[start_idx:end_idx],
ops['size_x_pl']: size_x[start_idx:end_idx],
}
pred_val, graph_feature = sess.run(
[
ops['pred'],
ops['graph_feature']
],
feed_dict=feed_dict)
all_preds.append(-np.exp(pred_val.ravel())) # pred_val -> predicted survival time
all_features.append(graph_feature)
test_ci += concordance_index(time[start_idx:end_idx],
-np.exp(pred_val.ravel()),
status[start_idx:end_idx])
all_status.append(status[start_idx:end_idx])
all_times.append(time[start_idx:end_idx])
left_num = file_size - end_idx
pad_num = BATCH_SIZE - left_num
if pad_num > 0 and left_num > 0:
batch_count += 1
last_batch_data = np.concatenate((data[-left_num:], data[: pad_num]), axis=0)
last_batch_lap = np.concatenate((laplacian[-left_num:], laplacian[: pad_num]), axis=0)
last_batch_size_x = np.concatenate((size_x[-left_num:], size_x[: pad_num]), axis=0)
feed_dict = {ops['pointclouds_pl']: last_batch_data,
ops['is_training_pl']: is_training,
ops['laplacian_pl']: last_batch_lap,
ops['size_x_pl']: last_batch_size_x,
}
pred_val, graph_feature = sess.run(
[
ops['pred'],
ops['graph_feature']
],
feed_dict=feed_dict)
all_preds.append(-np.exp(pred_val[: left_num].ravel())) # pred_val -> predicted survival time
all_features.append(graph_feature[: left_num])
test_ci += concordance_index(time[-left_num:],
-np.exp(pred_val[: left_num].ravel()),
status[-left_num:])
all_status.append(status[-left_num:])
all_times.append(time[-left_num:])
all_preds = np.squeeze(np.concatenate(all_preds)) #
all_features = np.squeeze(np.concatenate(all_features))
log_string('Testing CI : %f \n\n' % (test_ci / float(batch_count)))
avg_test_ci = test_ci / float(batch_count)
all_status = np.squeeze(np.concatenate(all_status))
all_times = np.squeeze(np.concatenate(all_times))
test_ci_oneshot = concordance_index(all_times, all_preds, all_status)
log_string('One-shot Testing CI : %f \n\n' % test_ci_oneshot)
patient_ci = get_patient_ci(all_times, all_preds, all_status, test_pid)
p_feature = get_patient_feature(test_pid, all_features)
assert all_features.shape[0] == data.shape[0] == all_preds.shape[0]
return all_features, all_preds, avg_test_ci, test_ci_oneshot, patient_ci, p_feature
def get_patient_ci(times, preds, status, pids):
# due the DNN give WSI-wise prediction, some patient may have multiple prediction of survival times
# we have several ways of doing it, we choose to averaging the prediction and use it as pid wise prediction
all_patient = np.unique(pids).tolist()
all_p_preds, all_p_times, all_p_status = [], [], []
for p in all_patient:
idxs = np.where(pids == p)
preds_p = preds[idxs]
times_p = times[idxs]
status_p = status[idxs]
avg_pred_p = np.squeeze(np.mean(preds_p))
avg_times_p = times_p[0]
avg_status_p = status_p[0]
all_p_preds.append(avg_pred_p)
all_p_times.append(avg_times_p)
all_p_status.append(avg_status_p)
all_p_preds = np.array(all_p_preds)
all_p_times = np.array(all_p_times)
all_p_status = np.array(all_p_status)
patient_ci = concordance_index(all_p_times, all_p_preds, all_p_status)
log_string('Patient Testing CI : %f \n\n' % patient_ci)
return patient_ci
# def train_cox_lasso(train_data, test_data, l1=0.5, alphas=np.linspace(0.001, 0.5, 40)):
#
# from sksurv.linear_model import CoxnetSurvivalAnalysis
# cph = CoxnetSurvivalAnalysis(l1_ratio=l1, alphas=alphas)
# train_y = []
#
# # prepare data, train Lasso Cox model
# features = train_data['features']
# status = train_data['status'].tolist()
# time = train_data['time'].tolist()
#
# for i in range(features.shape[0]):
# train_y.append((status[i], time[i]))
#
# train_y = np.array(train_y, dtype=[('Status', '?'), ('Survival', '<f8')])
# cph.fit(features, train_y)
#
# # predict survival time on testing
# train_res = cph.predict(features)
# train_ci = concordance_index(np.array(time), train_res, np.array(status))
# print("LASSO COX Train CI %f" % train_ci)
# res_median = np.median(train_res)
#
# features_test = test_data['features']
# test_res = cph.predict(features_test)
# test_status = test_data['status'].tolist()
# test_time = test_data['time'].tolist()
#
# test_ci = concordance_index(np.array(test_time), test_res, np.array(test_status))
# print("LASSO COX Testing CI %f" % test_ci)
# group1 = test_res > res_median
# if sum(group1) > 0:
# draw_curve(test_res, test_status, test_time, median_fromtrain)
# else:
# ValueError('group1 is empty! ')
def plot_loss(epoch, loss_seq):
import matplotlib.pyplot as plt
plt.figure(0)
plt.plot(np.arange(len(loss_seq)), loss_seq, 'ro-', linewidth=5)
plt.axis([0, MAX_EPOCH, 0, 25])
plt.savefig(os.path.join(IMG_DIR, "loss_curve_ep_{}.png".format(epoch)),
format="PNG")
plt.close()
def find_labels(wsi_names, labels, labels2=None, dataset=DATA_NAME):
wsi_status_list, wsi_time_list, wsi_pid_list = [], [], []
if dataset == 'TCGA' or dataset == 'TCGA-LUAD' or dataset == 'TCGA-LUSC' or dataset == 'TCGA-GBM':
for wsi in wsi_names.tolist():
wsi_id = wsi[:12]
# print("finding labels for WSI %s" % wsi_id)
if wsi_id in labels['pid']:
# here wsi_id is pid
idx = labels['pid'].index(wsi_id)
status = float(labels['status'][idx])
time = float(labels['time'][idx])
pid = wsi_id
wsi_status_list.append(status)
wsi_time_list.append(time)
wsi_pid_list.append(pid)
else:
ValueError("This WSI %s has no label" % wsi_id)
elif dataset == 'NLST':
for wsi in wsi_names.tolist():
wsi_id = wsi[:-4] + '.svs'
# print("finding labels for WSI %s" % wsi_id)
if wsi_id in labels['wsi']:
idx = labels['wsi'].index(wsi_id)
status = float(labels['status'][idx])
time = float(labels['time'][idx])
pid = labels['pid'][idx]
wsi_status_list.append(status)
wsi_time_list.append(time)
wsi_pid_list.append(pid)
else:
ValueError("This WSI %s has no label" % wsi_id)
elif dataset == 'ADC' or dataset == 'SCC':
for wsi in wsi_names.tolist():
# do not know if the wsi from TCGA or NLST
wsi_id = wsi[:-4] + '.svs' # try NLST
if wsi_id in labels['wsi']:
idx = labels['wsi'].index(wsi_id)
status = float(labels['status'][idx])
time = float(labels['time'][idx])
pid = labels['pid'][idx]
wsi_status_list.append(status)
wsi_time_list.append(time)
wsi_pid_list.append(pid)
continue
# try TCGA
wsi_id = wsi[:12]
if wsi_id in labels2['pid']:
# here wsi_id is pid
idx = labels2['pid'].index(wsi_id)
status = float(labels2['status'][idx])
time = float(labels2['time'][idx])
pid = wsi_id
wsi_status_list.append(status)
wsi_time_list.append(time)
wsi_pid_list.append(pid)
else:
ValueError("This WSI %s has no label" % wsi_id)
return np.array(wsi_status_list).astype(np.float32), np.array(wsi_time_list).astype(np.float32), np.array(wsi_pid_list)
def train_one_epoch(epoch, sess, ops, lr):
""" ops: dict mapping from string to tf ops """
is_training = True
if epoch == 30:
print('stop me!')
data, laplacian, size_x, wsi_name = prepare_data.prepare_train_data(DATA_NAME, DATASET_NAME)
file_size = data.shape[0]
num_batches = file_size // BATCH_SIZE
if DATA_NAME == 'ADC' or DATA_NAME == 'SCC':
nlst_labels, tcga_labels = prepare_data.retrieve_survival_labels_train(DATA_NAME, DATASET_NAME, LABEL_DIR)
else:
labels = prepare_data.retrieve_survival_labels_train(DATA_NAME, DATASET_NAME, LABEL_DIR)
loss_sum = 0
train_ci = 0
start_idx = 0
end_idx = BATCH_SIZE
all_features, all_status, all_time, all_pid, all_wsi_name = [], [], [], [], []
# for batch_idx in range(num_batches):
while end_idx <= file_size:
wsi_sel = wsi_name[start_idx: end_idx]
if DATA_NAME == 'ADC' or DATA_NAME == 'SCC':
status, time, pid = find_labels(wsi_sel, nlst_labels, tcga_labels, DATA_NAME)
else:
status, time, pid = find_labels(wsi_sel, labels, dataset=DATA_NAME)
if 1 not in status.tolist() or 0 not in status.tolist():
# this batch cannot be run, because loss will be 0. extend the end_idx
start_idx += 1
end_idx = start_idx + BATCH_SIZE
else:
idx_order = np.argsort(time)[::-1] # from larger to smaller
batch_data = data[start_idx:end_idx]
batch_lap = laplacian[start_idx:end_idx]
batch_size_x = size_x[start_idx:end_idx]
batch_data = batch_data[idx_order]
batch_lap = batch_lap[idx_order]
batch_size_x = batch_size_x[idx_order]
status = status[idx_order]
time = time[idx_order]
pid = pid[idx_order]
wsi_sel = wsi_sel[idx_order]
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['is_training_pl']: is_training,
ops['learning_rate_pl']: lr,
ops['laplacian_pl']: batch_lap,
ops['size_x_pl']: batch_size_x,
ops['status_pl']: status,
}
step, _, real_time_lr, loss_val, pred_val, graph_feature = sess.run(
[
ops['step'],
ops['train_op'],
ops['final_lr'],
ops['loss'],
ops['pred'],
# ops['attn'],
ops['graph_feature'],
],
feed_dict=feed_dict)
log_string(" lr at epoch % s : %s" % (epoch, real_time_lr))
loss_sum += loss_val
train_ci += concordance_index(time, -np.exp(pred_val.ravel()), status)
start_idx = end_idx
end_idx += BATCH_SIZE
all_features.append(graph_feature)
all_status.append(status)
all_time.append(time)
all_pid.append(pid)
all_wsi_name.append(wsi_sel)
all_features = np.squeeze(np.vstack(all_features))
all_status = np.squeeze(np.concatenate(all_status))
all_time = np.squeeze(np.concatenate(all_time))
all_pid = np.squeeze(np.concatenate(all_pid))
all_wsi_name = np.squeeze(np.concatenate(all_wsi_name))
avg_loss = loss_sum / float(num_batches)
log_string('Training CI at epoch %s: %f' % (epoch, train_ci / float(num_batches)))
log_string('mean loss at epoch %s: %f \n\n' % (epoch, avg_loss))
if epoch > 19 and epoch % 10 == 0:
saver = ops['saver_op']
save_path = saver.save(sess, MODEL_SAVE_DIR + '/agcn_survival_backbone_ep{}'.format(epoch))
print("Backbone Net saved in file: %s" % save_path)
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
print_tensors_in_checkpoint_file(file_name=save_path,
tensor_name='',
all_tensors=False)
p_feature = get_patient_feature(all_pid, all_features)
train_data_dict = {
'features': all_features,
'status': all_status,
'time': all_time,
'pid': all_pid,
'wsi': all_wsi_name,
'patient_feature': p_feature,
'train_ci': train_ci / float(num_batches),
}
return train_data_dict, avg_loss
def get_patient_feature(pid, features):
all_p_feature = {}
for p in np.unique(pid).tolist():
idx_wsi = np.where(pid == p)
feature_p = features[idx_wsi]
mean_f_p = np.mean(feature_p, axis=0)
all_p_feature[p] = mean_f_p
return all_p_feature
def evaluate_one_epoch(epoch, sess, ops):
""" ops: dict mapping from string to tf ops """
data, laplacian, size_x, wsi_name = prepare_data.prepare_test_data(DATA_NAME, DATASET_NAME)
if DATA_NAME == 'ADC' or DATA_NAME == 'SCC':
nlst_labels, tcga_labels = prepare_data.retrieve_survival_labels_test(DATA_NAME, DATASET_NAME, LABEL_DIR)
else:
labels = prepare_data.retrieve_survival_labels_test(DATA_NAME, DATASET_NAME, LABEL_DIR)
if DATA_NAME == 'ADC' or DATA_NAME == 'SCC':
test_status, test_time, test_pid = find_labels(wsi_name, nlst_labels, tcga_labels, DATA_NAME)
else:
test_status, test_time, test_pid = find_labels(wsi_name, labels, dataset=DATA_NAME)
print("Evaluating on Testing")
test_graph_features, test_pred_time, test_ci, oneshot_ci, patient_ci, p_feature = retrieve_feature(sess, ops,
data,
laplacian,
size_x,
test_time,
test_status,
test_pid)
# eval all
p_value = draw_curve(test_pred_time, test_status, test_time, np.median(test_pred_time), epoch)
test_data_dict = {
'features': test_graph_features,
'status': test_status,
'time': test_time,
'pid': test_pid,
'patient_feature': p_feature,
'p_value': p_value,
'ci': test_ci,
'oneshot_ci': oneshot_ci,
'p_ci': patient_ci,
}
return test_data_dict
def draw_curve(preds, status, time, median_fromtrain, epoch, save_fig=False):
# Kaplan-Meier curve on testing data, group by median from train predicted survival time
from lifelines import KaplanMeierFitter
kmf = KaplanMeierFitter()
T = np.array(time).astype(np.int32)
E = np.array(status).astype(np.int32)
ix = preds > median_fromtrain # low risk group, preds ~ predicted survival time
# kmf.fit(T[~ix], E[~ix], label='high risk')
# ax = kmf.plot()
#
# kmf.fit(T[ix], E[ix], label='low risk')
# kmf.plot(ax=ax)
# if save_fig:
# ax.get_figure().savefig(os.path.join(IMG_DIR, "km_%s_%s_ep%d.png" % (MODEL_NAME, DATA_NAME, epoch)))
from lifelines.statistics import logrank_test
results = logrank_test(T[~ix], T[ix], event_observed_A=E[~ix], event_observed_B=E[ix])
results.print_summary()
print(results.p_value)
print(results.test_statistic)
return results.p_value
def save_result(epoch, preds, labels, model_name):
"""
save the predictions to local
"""
out_preds = "prediction_%s_ep_%d.joblib" % (model_name, epoch)
print("saving prediction to {}".format(out_preds))
io_utils.save_to_disk(preds, os.path.join(RESULT_DIR, out_preds))
out_labels = "label_{}.joblib".format(model_name)
if not os.path.exists(os.path.join(RESULT_DIR, out_labels)):
print("saving prediction to {}".format(out_labels))
io_utils.save_to_disk(labels, os.path.join(RESULT_DIR, out_labels))
print("Successfully Saved Results!")
# def count_pid(data):
if __name__ == "__main__":
train()
# train_data, laplacian, size_x, wsi_name_train = prepare_data.prepare_train_data(DATA_NAME, DATASET_NAME)
# test_data, laplacian, size_x, wsi_name_test = prepare_data.prepare_test_data(DATA_NAME, DATASET_NAME)
# labels = prepare_data.retrieve_survival_labels_train(DATA_NAME, DATASET_NAME, LABEL_DIR)
#
# tets_labels = prepare_data.retrieve_survival_labels_test(DATA_NAME, DATASET_NAME, LABEL_DIR)
#
# test_status, test_time, train_pid = find_labels(wsi_name_train, labels, dataset=DATA_NAME)
# test_status, test_time, test_pid = find_labels(wsi_name_test, tets_labels, dataset=DATA_NAME)
# print(np.unique(train_pid).shape)
# print(np.unique(test_pid).shape)
# count_pid(train_data)