forked from hszhao/PSPNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
executable file
·173 lines (155 loc) · 5.6 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
"""
detector.py is an out-of-the-box windowed detector
callable from the command line.
By default it configures and runs the Caffe reference ImageNet model.
Note that this model was trained for image classification and not detection,
and finetuning for detection can be expected to improve results.
The selective_search_ijcv_with_python code required for the selective search
proposal mode is available at
https://github.com/sergeyk/selective_search_ijcv_with_python
TODO:
- batch up image filenames as well: don't want to load all of them into memory
- come up with a batching scheme that preserved order / keeps a unique ID
"""
import numpy as np
import pandas as pd
import os
import argparse
import time
import caffe
CROP_MODES = ['list', 'selective_search']
COORD_COLS = ['ymin', 'xmin', 'ymax', 'xmax']
def main(argv):
pycaffe_dir = os.path.dirname(__file__)
parser = argparse.ArgumentParser()
# Required arguments: input and output.
parser.add_argument(
"input_file",
help="Input txt/csv filename. If .txt, must be list of filenames.\
If .csv, must be comma-separated file with header\
'filename, xmin, ymin, xmax, ymax'"
)
parser.add_argument(
"output_file",
help="Output h5/csv filename. Format depends on extension."
)
# Optional arguments.
parser.add_argument(
"--model_def",
default=os.path.join(pycaffe_dir,
"../models/bvlc_reference_caffenet/deploy.prototxt"),
help="Model definition file."
)
parser.add_argument(
"--pretrained_model",
default=os.path.join(pycaffe_dir,
"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),
help="Trained model weights file."
)
parser.add_argument(
"--crop_mode",
default="selective_search",
choices=CROP_MODES,
help="How to generate windows for detection."
)
parser.add_argument(
"--gpu",
action='store_true',
help="Switch for gpu computation."
)
parser.add_argument(
"--mean_file",
default=os.path.join(pycaffe_dir,
'caffe/imagenet/ilsvrc_2012_mean.npy'),
help="Data set image mean of H x W x K dimensions (numpy array). " +
"Set to '' for no mean subtraction."
)
parser.add_argument(
"--input_scale",
type=float,
help="Multiply input features by this scale to finish preprocessing."
)
parser.add_argument(
"--raw_scale",
type=float,
default=255.0,
help="Multiply raw input by this scale before preprocessing."
)
parser.add_argument(
"--channel_swap",
default='2,1,0',
help="Order to permute input channels. The default converts " +
"RGB -> BGR since BGR is the Caffe default by way of OpenCV."
)
parser.add_argument(
"--context_pad",
type=int,
default='16',
help="Amount of surrounding context to collect in input window."
)
args = parser.parse_args()
mean, channel_swap = None, None
if args.mean_file:
mean = np.load(args.mean_file)
if mean.shape[1:] != (1, 1):
mean = mean.mean(1).mean(1)
if args.channel_swap:
channel_swap = [int(s) for s in args.channel_swap.split(',')]
if args.gpu:
caffe.set_mode_gpu()
print("GPU mode")
else:
caffe.set_mode_cpu()
print("CPU mode")
# Make detector.
detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,
input_scale=args.input_scale, raw_scale=args.raw_scale,
channel_swap=channel_swap,
context_pad=args.context_pad)
# Load input.
t = time.time()
print("Loading input...")
if args.input_file.lower().endswith('txt'):
with open(args.input_file) as f:
inputs = [_.strip() for _ in f.readlines()]
elif args.input_file.lower().endswith('csv'):
inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})
inputs.set_index('filename', inplace=True)
else:
raise Exception("Unknown input file type: not in txt or csv.")
# Detect.
if args.crop_mode == 'list':
# Unpack sequence of (image filename, windows).
images_windows = [
(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)
for ix in inputs.index.unique()
]
detections = detector.detect_windows(images_windows)
else:
detections = detector.detect_selective_search(inputs)
print("Processed {} windows in {:.3f} s.".format(len(detections),
time.time() - t))
# Collect into dataframe with labeled fields.
df = pd.DataFrame(detections)
df.set_index('filename', inplace=True)
df[COORD_COLS] = pd.DataFrame(
data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)
del(df['window'])
# Save results.
t = time.time()
if args.output_file.lower().endswith('csv'):
# csv
# Enumerate the class probabilities.
class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]
df[class_cols] = pd.DataFrame(
data=np.vstack(df['feat']), index=df.index, columns=class_cols)
df.to_csv(args.output_file, cols=COORD_COLS + class_cols)
else:
# h5
df.to_hdf(args.output_file, 'df', mode='w')
print("Saved to {} in {:.3f} s.".format(args.output_file,
time.time() - t))
if __name__ == "__main__":
import sys
main(sys.argv)