-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
189 lines (171 loc) · 6.62 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import csv
import sys
import argparse
import numpy as np
import h5py
import string
import re
from collections import defaultdict
def tokenize(sent):
sent = re.sub('[%s]' % string.punctuation, ' ', sent)
sent = string.lower(sent.strip()).split()
sent = [i for i in sent if len(i)!=0]
return sent
def write_vocab(vocab, outfile, chars=0):
out = open(outfile, "w")
items = [(v, k) for k, v in vocab.iteritems()]
items.sort()
for v, k in items:
print >>out, k, v
out.close()
def pad(ls, length, symbol):
if len(ls) >= length:
return ls[(len(ls)-length):len(ls)]
return [symbol] * (length -len(ls))+ls
def pad2(ls, length, symbol):
if len(ls) >= length:
return ls[0:length]
return [symbol] * (length -len(ls))+ls
def prune_vocab(vocab,k):
d = {"<blank>":0,"<unk>": 1}
vocab_list = [(word, count) for word, count in vocab.iteritems()]
vocab_list.sort(key=lambda x: x[1], reverse=True)
k = min(k-2, len(vocab_list))
pruned_vocab = [pair[0] for pair in vocab_list[:k]]
for word in pruned_vocab:
if word not in d:
d[word] = len(d)
return d
def make_vocab(trainfile):
vocab = defaultdict(int)
with open(trainfile) as csvfile:
filereader = csv.reader(csvfile,delimiter=',')
next(filereader, None)
for row in filereader:
qry = tokenize(row[0])
rsp = tokenize(row[1])
for w1 in qry:
vocab[w1]+=1
for w2 in rsp:
vocab[w2]+=1
return vocab
#convert training data
def convert(datafile,vocab,seql1,seql2):
qlist = []
rlist = []
y = []
count = 0
with open(datafile) as csvfile:
filereader = csv.reader(csvfile,delimiter=',')
next(filereader, None)
for row in filereader:
count = count +1
if count%100000==0:
print count," lines processed"
#break
if len(row)!=3:
continue
qry = tokenize(row[0])
rsp = tokenize(row[1])
for i in xrange(0,len(qry)):
qry[i] = qry[i] if qry[i] in vocab else "<unk>"
for i in xrange(0,len(rsp)):
rsp[i] = rsp[i] if rsp[i] in vocab else "<unk>"
if len(qry) < 1 or len(rsp) < 1:
continue
qryint = [vocab[i] for i in qry]
qryint = pad(qryint,seql1,0)
rspint = [vocab[i] for i in rsp]
rspint = pad(rspint,seql2,0)
qlist.append(qryint)
rlist.append(rspint)
y.append(int(row[2]))
qarray = np.array(qlist)
rarray = np.array(rlist)
yarray = np.array(y)
return qarray, rarray, yarray
#convert validation/test data
def convert2(datafile,vocab,seql1,seql2):
qlist = []
rlist = []
y = []
count = 0
with open(datafile) as csvfile:
filereader = csv.reader(csvfile,delimiter=',')
next(filereader, None)
for row in filereader:
count = count +1
if count%1000==0:
print count," lines processed"
#break
if len(row)<11:
continue
qry = tokenize(row[0])
for i in xrange(0, len(qry)):
qry[i] = qry[i] if qry[i] in vocab else "<unk>"
qryint = [vocab[i] for i in qry]
qryint = pad(qryint,seql1,0)
for i in range(1,11):
rsp = tokenize(row[i])
for i in xrange(0,len(rsp)):
rsp[i] = rsp[i] if rsp[i] in vocab else "<unk>"
if len(qry) < 1 or len(rsp) < 1:
continue
rspint = [vocab[i] for i in rsp]
rspint = pad2(rspint,seql2,0)
qlist.append(qryint)
rlist.append(rspint)
if i==1:
y.append(1)
else:
y.append(0)
qarray = np.array(qlist)
rarray = np.array(rlist)
yarray = np.array(y)
return qarray, rarray, yarray
def get_data(args):
print "Generating vocabulary ...\n"
vocab = make_vocab(args.trainfile)
dic = prune_vocab(vocab, args.vocabsize)
print "Saving vocabulary to "+args.outputfile+"_vocab.txt ...\n"
write_vocab(dic, args.outputfile + "_vocab.txt")
print "Converting training data ... \n"
train_q,train_r,train_y=convert(args.trainfile,dic,args.maxseqc,args.maxsequ)
print "Saving training data ..."
f = h5py.File(args.outputfile+"-train.hdf5", "w")
f["x1"]=train_q
f["x2"]=train_r
f["y"]=train_y
f["maxseqc"]=np.array([args.maxseqc])
f["maxsequ"] = np.array([args.maxsequ])
f["vocabsize"]=np.array([min(args.vocabsize,len(dic))])
f.close()
if not args.validfile=='':
print "Converting validation data ... \n"
valid_q,valid_r,valid_y=convert2(args.validfile,dic,args.maxseqc,args.maxsequ)
f = h5py.File(args.outputfile+"-valid.hdf5", "w")
f["x1"]=valid_q
f["x2"]=valid_r
f["y"]=valid_y
f.close()
if not args.testfile=='':
print "Converting test data ... \n"
test_q,test_r,test_y=convert2(args.validfile,dic,args.maxseqc,args.maxsequ)
f = h5py.File(args.outputfile+"-test.hdf5", "w")
f["x1"]=test_q
f["x2"]=test_r
f["y"]=test_y
f.close()
def main(arguments):
parser = argparse.ArgumentParser(description=__doc__,formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--vocabsize', help="Size of vocabulary, constructed by taking the top X most frequent words. Rest are replaced with special UNK tokens.",type=int, default=70000)
parser.add_argument('--trainfile', help="Path to training data", required=True)
parser.add_argument('--validfile', help="Path to validation data",default="")
parser.add_argument('--testfile', help="Path to test data",default="")
parser.add_argument('--maxseqc', help="Maximum sequence length of context. Sequences longer than this are truncated.", type=int, default=90)
parser.add_argument('--maxsequ', help="Maximum sequence length of utterance. Sequences longer than this are truncated.", type=int, default=70)
parser.add_argument('--outputfile', help="Prefix of the output file names. ", type=str, required=True)
args = parser.parse_args(arguments)
get_data(args)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))